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Cuando comencé la búsqueda de estudios de Máster que me motivaran, encontré un
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si hab́ıa alguna oportunidad para trabajar con él. En una respuesta casi ipsofacta, me
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de datos de sensores inerciales, conseguimos una estimación razonable de la fecha de alta
de pacientes internos con trastorno depresivo. Segundo, para realizar mi segundo TFM,
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ayudó que propusiera ser mi codirector de mi tesis, junto con Antonio.

Los años de doctorado siempre los recordaré como apasionantes. La simple satisfacción
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una nueva perspectiva, y fui capaz de exprimir al máximo aquella oportunidad. Además,
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y analizar. Está a punto de empezar a comerse el mundo. Gracias a ella aprend́ı que
todas las cosas buenas que hace un hermano mayor podŕıan serle útiles como referencia.
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Abstract

Deep Generative Models have gained significant popularity in the Machine Learning
research community since the early 2010s. These models allow to generate real-

istic data by leveraging the power of Deep Neural Networks. The field experienced a
significant breakthrough when Variational Autoencoders (VAEs) were introduced. VAEs
revolutionized Deep Generative Modeling by providing a scalable and flexible framework
that enables the generation of complex data distributions and the learning of potentially
interpretable latent representations. They have proven to be a powerful tool in numerous
applications, from image, sound and video generation to natural language processing or
drug discovery, among others. At their core, VAEs encode natural information into a re-
duced latent space and decode the learned latent space into new synthetic data. Advanced
versions of VAEs have been developed to handle challenges such as handling heteroge-
neous incomplete data, encoding into hierarchical latent spaces for representing abstract
and richer concepts, or modeling sequential data, among others. These advances have
expanded the capabilities of VAEs and made them a valuable tool in a wide range of
fields.

Despite the significant progress made in VAE research, there is still ample room for
improvement in their current state-of-the-art. One of the major challenges is improving
their approximate inference. VAEs typically assume Gaussian approximations of the pos-
terior distribution of the latent variables in order to make the training objective tractable.
The parameters of this approximation are provided by encoder networks. However, this
approximation leads to a lower bounded objective, which can degrade the performance of
any task that requires samples from the approximate posterior, due to the implicit bias.
The second major challenge addressed in this thesis is related to achieving meaning-
ful latent representations, or more broadly, how the latent space disentangles generative
factors of variation. Ideally, the latent space would modulate meaningful properties sep-
arately within each dimension. However, Maximum Likelihood optimizations require the
marginalization of latent variables, leading to non-unique solutions that may or may not
achieve this desired disentanglement. Additionally, properties learned at the observation
level in VAEs assume that every observation is generated independently, which may not
be the case in some scenarios. To address these limitations, more robust VAEs have
been developed to learn disentangled properties at the supervised group (also referred
to as global) level. These models are capable of generating groups of data with shared
properties.

The work presented in this doctoral thesis focuses on the development of novel methods
for improving the state-of-the-art in VAEs. Specifically, three fundamental challenges are
addressed: achieving meaningful global latent representations, obtaining highly-flexible
priors for learning more expressive models, and improving current approximate infer-
ence methods. As a first main contribution, an innovative technique named UG-VAE
from Unsupervised-Global VAE, aims to enhance the ability of VAEs in capturing fac-
tors of variations at data (local) and group (global) level. By carefully desigining the
encoder and the decoder, and throughout conductive experiments, it is demonstrated
that UG-VAE is effective in capturing unsupervised global factors from images. Second,
a non-trivial combination of highly-expressive Hierarchical VAEs with robust Markov
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Chain Monte Carlo inference (specifically Hamiltonian Monte Carlo), for which impor-
tant issues are successfully resolved, is presented. The resulting model, referred to as
the Hierarchical Hamiltonian VAE model for Mixed-type incomplete data (HH-VAEM),
addresses the challenges associated with imputing and acquiring heterogeneous missing
data. Throughout extensive experiments, it is demonstrated that HH-VAEM outperforms
existing one-layered and Gaussian baselines in the tasks of missing data imputation and
supervised learning with missing features, thanks to its improved inference and expres-
sivity. Furthermore, another relevant contribution is presented, namely a sampling-based
approach for efficiently computing the information gain when missing features are to be
acquired with HH-VAEM. This approach leverages the advantages of HH-VAEM and is
demonstrated to be effective in the same tasks.



Resumen

Los Modelos Generativos han ganado una gran popularidad en la comunidad de in-
vestigación de Aprendizaje Automático desde principios de la década de 2010. Estos

modelos permiten generar datos realistas aprovechando la capacidad de las Redes Neu-
ronales Profundas. El campo experimentó un avance significativo cuando se introdujeron
los Autoencoders Variacionales (VAEs). Los VAEs revolucionaron los Modelos Genera-
tivos Profundos al proporcionar un marco escalable y flexible que permite la generación
de distribuciones de datos complejas y el aprendizaje de representaciones latentes poten-
cialmente interpretables. Han demostrado ser una herramienta poderosa en numerosas
aplicaciones, desde la generación de imágenes, sonido y video hasta el procesamiento del
lenguaje natural o el descubrimiento de medicamentos, entre otros. En su definición bási-
ca, los VAEs codifican información natural en un espacio latente reducido y decodifican el
espacio latente aprendido en nuevos datos sintéticos. Se han desarrollado versiones avan-
zadas de VAEs para manejar desaf́ıos como el manejo de datos incompletos heterogéneos,
la codificación en espacios latentes jerárquicos para representar conceptos abstractos y
más ricos, o el modelado de datos secuenciales, entre otros. Estos avances han amplia-
do las capacidades de los VAEs y los han convertido en una herramienta valiosa en una
amplia gama de campos.

A pesar del progreso significativo en la investigación en VAEs, todav́ıa hay amplio
margen para mejorar el estado del arte. Uno de los principales desaf́ıos es mejorar su
inferencia aproximada. Los VAEs t́ıpicamente asumen aproximaciones Gausianas de la
distribución posterior de las variables latentes para hacer que el objetivo de entrenamiento
sea computable. Los parámetros de esta aproximación son proporcionados por la red de
codificadora. Sin embargo, esta aproximación conduce a un objetivo sesgado, lo que puede
degradar el rendimiento de cualquier tarea que requiera muestras de esta distribución
posterior, debido al sesgo impĺıcito. El segundo desaf́ıo importante abordado en esta tesis
se relaciona con lograr representaciones latentes significativas o, más ampliamente, cómo
el espacio latente organiza los factores generativos de variación. Idealmente, el espacio
latente modulaŕıa propiedades significativas por separado en cada dimensión. Sin embargo,
las optimizaciones de Máxima Verosimilitud requieren la marginalización de las variables
latentes, lo que lleva a soluciones no únicas que pueden o no lograr esta organización
deseada. Además, las propiedades aprendidas a nivel de observación en los VAEs asumen
que cada observación se genera de manera independiente, lo que puede no ser el caso
en algunos escenarios. Para abordar estas limitaciones, se han desarrollado VAEs más
robustos para aprender propiedades organizadas a nivel de grupo (también denominado
nivel global) de manera supervisada. Estos modelos son capaces de generar grupos de
datos con propiedades compartidas.

El trabajo presentado en esta tesis doctoral se centra en el desarrollo de nuevos méto-
dos para mejorar el estado del arte en VAEs. Espećıficamente, se abordan tres desaf́ıos
fundamentales: lograr representaciones latentes globales interpretables, obtener priors al-
tamente flexibles para aprender modelos más expresivos y mejorar los métodos de inferen-
cia aproximada actuales. Como primera contribución principal, se presenta una técnica
innovadora llamada UG-VAE de Unsupervised-Global VAE, que tiene como objetivo me-
jorar la capacidad de los VAEs en la captura de factores de variación a nivel de datos
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(local) y grupo (global). A través de los experimentos llevados a cabo, se demuestra que
UG-VAE es efectivo en la captura de factores globales no supervisados a partir de imáge-
nes mediante el diseño cuidadoso del codificador y decodificador. En segundo lugar, se
presenta una combinación no trivial de VAEs jerárquicos altamente expresivos con una
inferencia robusta mediante Markov Chain Monte Carlo (espećıficamente Hamiltonian
Monte Carlo), para la cual se resuelven con éxito importantes problemas. El modelo re-
sultante, denominado HH-VAEM por VAE jerárquico con Hamiltonian Monte Carlo para
datos incompletos heterogéneos, aborda los desaf́ıos asociados con la imputación y adquisi-
ción de datos perdidos heterogéneos. A través de extensos experimentos, se demuestra que
HH-VAEM supera a las alternativas existentes de una capa y basados en aproximaciones
Gausianas en las tareas de imputación de datos perdidos y aprendizaje supervisado con
datos parciales, gracias a su mejora en la inferencia y expresividad. Además, se presenta
como otra contribución relevante, un método basado en muestreo para calcular eficiente-
mente la ganancia de información cuando se adquieren variables perdidas con HH-VAEM.
Este enfoque aprovecha las ventajas de HH-VAEM y se demuestra que es efectivo en las
mismas tareas.
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CHAPTER 1

Introduction

Deep Generative Models gained popularity in the Machine Learning research commu-
nity in the early 2010s, allowing researchers to generate realistic data in an unsuper-

vised manner, leveraging the power of Deep Neural Networks. The field experienced a sig-
nificant breakthrough when Variational Autoencoders (VAEs) were introduced (Kingma
and Welling, 2013). VAEs revolutionized Deep Generative Modeling by providing a scal-
able and flexible framework that enables the generation of complex data distributions and
the learning of potentially interpretable latent representations. They have proven to be
a powerful tool in numerous applications, from image (Razavi et al., 2019b; Vahdat and
Kautz, 2020; Child, 2020), video (Yan et al., 2021; He et al., 2018; Bhagwatkar et al.,
2021), music (Roberts et al., 2018), or text generation (Bowman et al., 2015), to neural
machine translation (Sutskever et al., 2014), outlier detection (Chauhan et al., 2022; De-
nouden et al., 2018; Xiao et al., 2020; Serrà et al., 2019), time-series analysis (Tang and
Matteson, 2021a; Chung et al., 2015; Fraccaro et al., 2016) or recommendation systems
(Shenbin et al., 2020; Liang et al., 2018). Moreover, their flexibility and interpretability
have made them a popular choice for researchers and practitioners alike.

Despite the significant progress made in VAE research, there is still room for improve-
ment in their current state-of-the-art. It is essential to continue exploring and developing
new techniques to enhance their capabilities, such as improving sample quality, handling
missing data, or enhancing interpretatbility of the latent variables. The present the-
sis focuses on the development of novel methods for improving the state-of-the-art in
VAEs. Specifically, three fundamental challenges are addressed: achieving meaningful
latent representations, obtaining highly-flexible priors for learning more expressive mod-
els and improving current approximate inference methods. As a first main contribution,
innovative techniques for improving the interpretability of the latent spaces in VAEs are
proposed. Second, a non-trivial combination of highly-expressive Hierarchical VAEs with
robust Markov Chain Monte Carlo inference, for which important issues are successfully
resolved, is presented. Overall, the work presented in this doctoral thesis represents a
significant contribution to the ongoing effort to improve the state-of-the-art in VAEs and
has the potential to pave the way for new breakthroughs in deep generative modeling.

1.1. VAEs and improvement directions

Variational Autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al.,
2014) are likelihood-based deep generative models that approximate the intractable true
posterior over latent variables p(z|x), where x is an observed datapoint, by introducing
an auxiliary model to perform amortized variational inference with an encoder-decoder
architecture. The encoder network, parameterized by φ, maps observations x ∈ RD
to the parameters of the approximate posterior qφ(z|x), typically Gaussian, and with
lower dimensionality z ∈ Rd. The decoder network, parameterized by θ, maps the latent
variable sampled from this approximate posterior to the parameters of the data likelihood
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pθ(x|z). Ideally, within a maximum likelihood optimization, the log-evidence, log p(x),
would be maximized to learn the optimal parameters of the model. However, due to
the complexity added by the neural networks, this quantity is intractable. The objective
function to be maximized is an approximation, referred to as the Evidence Lower Bound
(ELBO),

L(x) = Eqφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x)||p(z)), (1.1)

which is a Lower Bound of the intractable log-evidence. The ELBO encourages proper
data reconstruction via the first term, whilst minimizing mismatch between the approx-
imate posterior and prior via the second term. Within the simplest setting, the prior
p(z) is modeled by a standard Gaussian. However, when complex data spaces are to be
encoded in the latent space, more flexible priors, typically parameterized by Neural
Networks, are required to avoid a significant mismatch between the aggregated posterior
and the prior, typically referred to as the holes problem (Rezende and Viola, 2018). On
the contrary, too powerful decoders might lead to uninformative posteriors, i.e. the poste-
rior is ignored by matching it with the prior, and the data is decoded using autoregressive
dependencies in z, a problematic known in the literature as posterior collapse.

1.1.1. Representation learning

Deep Generative Models are designed to uncover the underlying factors present in the
data they observe (Bengio et al., 2013). VAEs achieve this by learning a joint distribution
of observed data, denoted by x, and hidden factors, denoted by z, represented as p(x, z).
The crucial aspect of obtaining a meaningful representation is determining the posterior
distribution of the hidden factors, denoted by p(z|x). However, as pointed out by (Tom-
czak, 2021), learning a latent variable model by maximizing the likelihood function may
not lead to useful representations. As a result, it can be challenging to learn useful latent
representations with latent variable models.

When designing such generative models that compress high dimensional complex data
x into a reduced latent space z, it is of great interest to achieve meaningful latent
representations (Mathieu et al., 2019b). The quality of meaningful is related to how
the latent dimensions explain the underlying generative factors of the data. To provide
with an example, a dimension of a latent space for generating face images, might ideally
encode features like the angle of the face, skin or hair color.

Obtaining high interpretability of latent dimensions in VAEs is an open research ques-
tion. One possible solution is to carefully select a suitable class of models, such that the
structure of the latent space is designed to obtain meaningful representations with an in-
ductive bias. An example of such models are hierarchical VAEs (Vahdat and Kautz, 2020;
Child, 2020; Maaløe et al., 2019), which have recently demonstrated success in learning
interpretable latent spaces. This success can be attributed to their similarity with the
flow of information in the real world, from general abstract concepts to more specific and
unique features. Other example is the usage of mixture models (Dilokthanakul et al.,
2016) that allow for clusterizing the latent space leading to richer structures.

A second direction for addressing this challenge is to assess and encourage disentan-
glement, typically by choosing between two different alternatives. First, recent works
propose adding additional terms to the ELBO (Mathieu et al., 2019b; Higgins et al.,
2018; Tomczak and Welling, 2018), or modifying it with learnable factors (Higgins et al.,
2016), in order to balance between learning meaningful representations or achieving more
accurate reconstructions.

The third strategy employed in other works rely on enforcing disentanglement by
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Figure 1.1: Comparison of an accurate (computationally demanding) approximation of
the true posterior, p̂(z|x) (green contours), and Gaussian proposal learned by the encoder,
q(z|x) of a VAE (blue contours) with z ∈ R2 trained with the MNIST digit dataset.

incorporating extra information through semi-supervision. For example, in (Bouchacourt
et al., 2018), authors incorporate group-level information, such as the identity of a face
image, to account for a higher level of abstraction in learning generative factors of the
faces.

The aforementioned strategies for monitoring deep generative models to achieve mean-
ingful representations have shown important results. However, the current state of the art
lacks methods that can learn disentangled representations with any type of supervision.
In this thesis, a novel method for achieving this is presented as the first main research
contribution.

1.1.2. Approximate inference

Another challenge within VAEs to be handled is approximate inference. Due to the
intractability of the log-marginal likelihood function log p(x), which is the objective for
which the parameters should be ideally optimized following a Maximum Likelihood ap-
proach, approximations are required, being the ELBO of (1.1) the typical choice. In the
näıve VAE approaches (Kingma and Welling, 2013), Gaussian distributions are employed
as the variational proposal qφ(z|x). Although they generally achieve reasonably accurate
approximations (Cremer et al., 2018; Zhang et al., 2018), and have proven to be effective,
scalable and valid for training VAEs, the simplicity of this choice compared with the com-
plexity of the true posterior increases with the high dimensionality of complex datasets.
As depicted in Figure 1.1, for complex datasets with high-dimensionality, the shape of the
true posterior is far from being Gaussian-shaped. Several factors, including the expres-
sive capacity of the encoder/decoder, the flexibility of the prior, or the complexity of the
variational proposal, determine the suboptimality of this approximation (Cremer et al.,
2018). Hence, reducing this gap or considering alternatives for better approximate
inference is another relevant research direction found in the literature of VAEs.

For instance, in (Burda et al., 2015), authors propose an alternative objective, inspired
by importance weighting, and demonstrate its impressive efficacy in getting more accurate
approximations of the log evidence. More recent methods have adapted the Importance
Weighted Autoencoder (IWAE) to handling incomplete data (Mattei and Frellsen, 2019),
which is another topic of interest in this thesis. Another approach is to use Markov Chain
Monte Carlo (MCMC) methods to obtain more accurate samples from the posterior distri-
bution (Salimans et al., 2015; Campbell et al., 2021). Several papers have proposed using
MCMC methods such as Hamiltonian Monte Carlo (HMC), to modify the ELBO in var-
ious ways, including introducing auxiliary inference functions and optimizing the reverse
kernels (Salimans et al., 2015; Wolf et al., 2016; Caterini et al., 2018). Others like (Ruiz
et al., 2021) focus in obtaining efficient unbiased estimators for directly approximating
the gradients of the true log-likelihood.
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This thesis is focused on the direction for obtaining more accurate samples that closely
follow the true posterior. Concretely, in the second main contribution, a novel method
for automatically training HMC hyperameters for accurately sampling from the compli-
cated posterior a highly-expressive hierarchical VAE is presented.

1.2. Overview of Models and Contributions

This thesis is oriented to the design, implementation and evaluation of novel deep
generative models that overcome the aforementioned challenges of obtaining meaninful
latent representations, highly expressive models with flexible priors, and more accurate
inference approximations for enhancing VAEs in their current state-of-the-art. The prin-
cipal contributions are packed into two main relevant works, both accepted as a journal
publication (Peis et al., 2023) and a conference paper (Peis et al., 2022). Secondary re-
search contributions out of the main research direction of improving VAEs are mentioned
in their related subsections of Chapter 2. In the following, both principal contributions
are described.

1.2.1. Unsupervised learning of global factors

The first relevant contribution of this thesis (Peis et al., 2023) is a novel deep gen-
erative model based on non i.i.d. variational autoencoders that captures global depen-
dencies among observations in a fully unsupervised fashion. The model is referred to as
the Unsupervised-Global VAE (UG-VAE). In contrast to the recent semi-supervised
alternatives for global modeling in deep generative models, this approach combines a
mixture model in the local or data-dependent space and a global Gaussian latent vari-
able, which leads to obtain three particular insights. First, the induced latent global
space captures interpretable disentangled representations with no user-defined regular-
ization in the evidence lower bound (as in β-VAE and its generalizations). Second, the
model performs domain alignment to find correlations and interpolate between different
databases. Finally, the global space learns to discriminate between groups of observa-
tions with non-trivial underlying structures, such as face images with shared attributes
or defined sequences of digits images. These conclusions are conducted through extensive
experiments.

1.2.2. Hierarchical VAEs and Hamiltonian Monte Carlo

The second relevant contribution of the present thesis (Peis et al., 2022) is a novel
VAE framework for imputing and acquiring heterogeneous missing data. Within this
specific application domain, existing VAE methods are restricted by using only one layer
of latent variables and strictly Gaussian posterior approximations. To address these lim-
itations, the HH-VAEM is presented as a Hierarchical Hamiltonian VAE model
for mixed-type incomplete data that uses Hamiltonian Monte Carlo with automatic
hyper-parameter tuning for improved approximate inference. Troughout extensive exper-
iments, it is demonstrated that HH-VAEM outperforms existing baselines in the tasks
of missing data imputation and supervised learning with missing features, thanks to its
improved inference and expressitivy. Further, another relevant contribution, namely a
sampling-based approach for efficiently computing the information gain when missing
features are to be acquired with HH-VAEM, is jointly presented, leveraging the advan-
tages of HH-VAEM.
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1.3. Thesis Organization

The present doctoral manuscript is divided into four main chapters, that we shortly
review in the following paragraphs for a better comprehension of the document and its
organization. The references to the principal published pieces of work, where contributions
were initially presented, are included in the introductory lines of Chapters 4 and 5, as well
as in related subsections in Chapters 2 and 3, where secondary contributions are further
referenced.

Chapter 2: Deep Generative Models

This chapter serves as an introduction to deep generative modeling, which comprises
the main framework of Variational Autoencoders. The first section motivates the use of
Probabilistic Machine Learning as a robust perspective against deterministic approaches.
A concise revision of Probability Theory is included, covering several distribution types,
divergence for similarity measures, Bayesian inference, and Monte Carlo approximations.
The second part introduces generative modeling, including classic unsupervised methods
for generating data from latent variables. The third section briefly describes the field
of Deep Learning, culminating in a motivation for utilizing its advantages in generative
modeling. Finally, the chapter provides a succinct overview of Deep Generative Models,
classifying them and emphasizing the advantages of each type.

Chapter 3: Variational Autoencoders

This chapter centers around Variational Autoencoders, the focal models of this the-
sis. The chapter begins with an introductory presentation of deterministic autoencoding
frameworks, leading to the presentation of the base VAE model, which includes amor-
tized variational inference and the definition of the Evidence Lower Bound. The chapter
then briefly reviews the typical issues, applications, and directions for improving VAEs,
culminating in sections closely related to the contributions of this thesis, including prior
design, hierarchical VAEs, representation learning, and approximate inference. The chap-
ter concludes by describing current methods for adapting VAEs to handle heterogeneous
incomplete data and the balancing between increasing model flexibility and reducing in-
ference bias.

Chapter 4: Unsupervised learning of global factors in VAEs

This chapter presents the first of the principal contributions of the present thesis.
The Unsupervised Global VAE (UG-VAE) is introduced as a novel method for learn-
ing meaningful, highly interpretable latent representations at local and global level from
batches of data randomly selected. An overview on related previous methods that utilize
semi-supervision, ELBO modifications or inductive bias via model design is provided.
Afterwards, the method is presented by describing its parts, including the generative and
inference models. An extensive experimental sections provides empirial evidence of the
contributions.

Chapter 5: Hierarchical VAEs and Hamiltonian Monte Carlo

This chapter presents the second of the main principal contributions of this thesis. A
novel method, referred to as HH-VAEM from Hierarchical Hamiltonian VAE for mixed-
type incomplete data, is presented. After reviewing the related work and state-of-the-art
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in VAEs for incomplete data, hierarchical VAEs and introducting Hamiltonian Monte
Carlo, the components of HH-VAEM and the importance of solved challenges are carefully
described. In a separate section, a novel method for acquiring missing data and performing
active learning in a sampling-based aproach is presented, that leverages the advantages
of HH-VAEM. In the experimental section, results show the superiority of the proposed
model and active learning method with respect to the alternatives.

Chapter 6: Conclusions and Future Work

The thesis is concluded in this chapter by surveying the main technical contributions,
as well as the possible future research directions for the principal contributions, conveying
technical and applied research.
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CHAPTER 2

Deep Generative Models

The exponential growth of Machine Learning techniques and their application in a
vast list of topics in the recent decades has been significant. The field of Pattern

Recognition focuses on finding patterns in data through computer algorithms, allowing
for useful predictions based on these discovered regularities. As an example, consider the
problem of categorizing handwritten digits, depicted in Figure 2.1. Each digit is portrayed
as a 28 x 28 pixel image, which can be represented by a 784-dimensional vector. The
objective is to develop a machine that can take this data vector x as input and output
the digit’s identity, y, ranging from 0 to 9. Due the variability in handwriting, this is an
arduous task to solve. Intuitively, one might think that the solution would be to create
custom rules or heuristics based on the shapes or strokes of the digits, but this approach
leads to a complex network of rules and exceptions, resulting in limited performance.

A more effective method is to use a Machine Learning approach, where a large set of
N digits (x, ...,xN ) referred to as a training set is utilized to optimize the parameters of
an learnable model. The digits’ categories in the training set are pre-determined, usually
through manual inspection and labeling. The category of each digit can be represented
using a target vector, y. The Machine Learning algorithm can be defined as the process
of learning an accurate function y = f(x) that takes in a new digit image x as input
and outputs a vector y that tries to predict the original labels of the training set. The
specific form of the function y = f(x) is established during the training stage. For
instance: a linear function is considered in the toy example of Figure 2.2a. Once the
model is trained, it can predict the category of new digit images, non observed by the
model during training, that form the test set. The capability of accurately categorizing
new examples that are different from the training data is referred to as generalization.
In real-world applications, the variability of the input vectors is such that the training
data is only a tiny fraction of all possible input vectors, making generalization a major
goal in Machine Learning and pattern recognition.

The previous example focuses on one of the two main types of Machine Learning
models: supervised learning, which assumes that both input data x and target data
y are available during training, and the goal is to learn a mapping from x to y in order
to make predictions. When the target is discrete, i.e. y ∈ {1, ..., C}, the considered
task is classification, whilst if the target is continuous, y ∈ RD, the task is referred
to as regression. In contrast, in unsupervised learning, the data is x is available
and the goal is to discover the underlying structure of the data itself, by learning the
parameters θ of a model in order to express the probability of the data: p(x|θ). In other
terms, the considered task is density estimation. It is more related to how human and
animal learning occurs, and it avoid the costs of manually labeling data under supervised
scenarios. Within the unsupervised setting, Generative Models are a type of machine
learning model that aim to learn the underlying distribution of the data in order to
generate new samples that are similar to the original data.

In the context of generative models, Deep Neural Networks (DNNs) can be used as
powerful function approximators that parameterize probability distributions. This has
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Figure 2.1: Training samples from the MNIST handwritten digits dataset (LeCun, 1998).

led to the development of Deep Generative Models (DGMs), which are generative models
that use DNNs as their main building blocks. DGMs come in different types, such as
Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Flow-
based nodels, Diffusion models, etc. They are capable of generating high-quality, realistic
samples from complex distributions, such as images, audio, video or text, among others.

In this chapter, a comprehensive examination of deep generative models is presented,
beginning with a broad overview that may assist readers without prior knowledge to
develop an intuitive understanding of deep generative modeling. The objectives of this
chapter are: i) to introduce and motivate a Probabilistic Machine Learning perspective,
ii) to provide a concise summary of recent Deep Learning approaches, and iii) to explain
the categorization of current deep generative models as probabilistic models that exploit
the capabilities of deep neural networks.

2.1. Probabilistic Machine Learning

In general, it is of vital importance for Machine Learning models to possess the ca-
pacity to quantify their level of uncertainty in regards to the environment in which they
operate. The trustworthiness of a system that lacks this ability is questionable, as even a
slight disturbance in its internal beliefs may result in a shift in its level of confidence and
decision-making outcomes. Furthermore, effective communication with a system that is
unable to clearly express its views on the novelty of its surroundings becomes a challenge.

To emphasize the significance of uncertainty quantification in the decision-making
process, an example of three systems that categorize objects into two groups, namely
orange and blue, is depicted in Figure 2.2. Given a training set D = {x1:N , y1:N} of
two-dimensional data x1:N = {x1, x2}1:N with xi ∈ R2 and binary targets y1:N with
yi ∈ {0, 1}, and a new data point x∗ (represented by a black cross), we can adopt three
methods to make a decision. Firstly, in 2.2a, a linear classifier is established by modeling
the predicted class with a deterministic function of the inputs. All the samples that
lied into the blue region will be categorized as negative samples, modeled with f(x) = 0,
independently of their distance to the boundary. Consequently, if the new sample was
positive, this model would be incorrectly certain about classifying it as negative. This
simple model can be trained by minimizing the classification error in the training set
(or maximizing the accuracy). In contrast, in 2.2b, a logistic regression is considered,
where a Bernoulli likelihood function (Section 2.1.1), parameterized by a learnable linear
regression, models the probability of the output assigned class. Here, the model can be
trained by maximizing the likelihood probability, or equivalently, as it will be discussed
later in Section 2.1.1, by minimizing the binary cross entropy loss. When a test sample
falls far to the linear decision boundary, the probability of the assigned class increases,
thus introducing a simple method for measuring uncertainty.

In Figure 2.2c, a probabilistic model on both the predictions and input data is consid-
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ered, which additionally learns a distribution over the input data, p(x). Here, additional
information can be captured: the black cross is not only more likely to be negative, but
also distant from the region of high probability mass. The joint p(x, y) will be low, as it
accounts for both criteria, ending a highly uncertain decision.

(a) f(x) (b) p(y|x) (c) p(y,x) = p(y|x)p(x)

Figure 2.2: Uncertainty quantification example in a simple binary classification scenario
with 2-dimensional data. Deterministic classifier (a) vs Logistic Regression (b) and (c) a
generative approach. Background color indicates p(y|x).

Overall, fitting probability distributions with machine learning models enables the
quantification of uncertainty over the predicted target value given any new input value,
which is crucial for many downstream tasks. Typically, probabilistic machine learning
models are trained by maximizing the (log) probability of the observed data with respect
to the learnable parameters θ, i.e., log pθ(D), where D refers to a dataset that includes
input data x and optionally supervised labels y, depending on the considered task. As
discussed later in this thesis, log pθ(D) can be extended by introducing additional variables
and designing their probabilistic connections. Learning the parameters of these models is
addressed by maximizing this function, a strategy referred to as Maximum Likelihood
(ML). Depending on the nature of the observed data, different probability distributions
are considered, which are described in the following subsections. Probability distributions
can be primarily divided into two classes: those for discrete data and those for continuous
data.

2.1.1. Probability Distributions

In mathematical terms, a random variable is a function that maps outcomes of
a random event or experiment to numerical values. Given a sample space of possible
outcomes, a random variable assigns a unique number to each outcome. The set of all
possible values that the random variable can take on is called its range or support. The
random variable can be either discrete or continuous, depending on whether its range
consists of a finite or countably infinite number of values, or a continuous range of values,
respectively.

Formally, a random variable X can be defined as a function X : Ω → RD, where Ω
is the sample space of the random experiment and RD is the D-dimensional set of real
numbers. Given an outcome ω in Ω, the valueX(ω) is the numerical value assigned by the
random variable to that outcome. The distribution of a random variable is then described
by its probability mass function (pmf) for discrete random variables or probability
density function (pdf) for continuous random variables. The former assigns probability
mass to regions in Ω, whilst the latter to each possible value of the random variable.

In the following sections, the probability distributions considered throughout the de-
velopment of the doctoral thesis are briefly described.
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Distributions for continuous data

Let X be a continuous random variable with range (or support) RD, and let f(x) be
a function defined for all x ∈ R such that:

f(x) ≥ 0 for all x ∈ RD, meaning that the function is non-negative over the entire
range of X.

The integral of f(x) over the range RD is equal to 1, i. e.
∫
x
p(x)dx = 1, which

represents the total probability of X taking a value in the range RD.

For any interval (a, b) within the range RD, the probability that X takes on a value
in the interval is given by the definite integral of f(x) over the interval:

P (a <X < b) =

∫ b

a

f(x)dx (2.1)

In this way, the pdf provides a way to determine the probability that a continuous random
variable takes on a value in a given interval by computing the area under the curve of the
pdf over that interval.

The Gaussian distribution

The Gaussian, also referred to as Normal distribution, is a specific example of a broad
class of distributions with interesting properties, called the exponential family (Duda
et al., 1973; Bernardo and Smith, 2009), is the most widely employed mathematical
function for modeling the probability of continuous variables. A vast amount of real-
world phenomena can be modeled as a Gaussian distribution, including measurement
errors, sensor noise, financial returns, and many other types of data. Mathematically, the
multivariate Gaussian is defined as:

N (x;µ,Σ) =
1

(2π)D/2 |Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.2)

The simplicity of the mathematical form of the Gaussian allows for relatively straight-
forward usage in all its applications, more specifically in Bayesian inference 2.1.3, for the
interest of this thesis. Other interesting properties are:

Symmetry : the symmetry around its mean makes it easy to understand and inter-
pret. Additionally, the mean, median, and mode of the distribution are all equal to
the same value.

Well-defined statistics: which allow for the calculation of probabilities and the quan-
tification of uncertainty.

Central Limit Theorem: which states that the sum of many independent and iden-
tically distributed random variables approaches a normal distribution, regardless of
the distribution of the individual variables (Giné, 1983; Liapounoff, 1900).

While there are multiple types of probability distributions for continuous data (Bishop
and Nasrabadi, 2006; Murphy, 2012), this thesis will primarily use the Gaussian distribu-
tion for modeling the probability of any continuous variable, including positive continuous
data. The logarithm transformation will be employed to rearrange the transformed data
in the real number space.
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Distributions for discrete data

Let X be a discrete random variable with possible outcomes x1, x2, ..., xK . The prob-
ability distribution of X is a function, denoted by P (X), and referred to as probability
mass function, or pmf, that assigns a probability to each possible outcome of X, such
that:

P (X = xi) ≥ 0 for all i = 1, 2, ...,K, or the probabilities are non-negative.

The sum of all probabilities is equal to 1:
∑K
i=1 P (X = xi) = 1.

The Bernoulli distribution

The Bernoulli distribution is a discrete probability distribution that models the out-
come of a binary experiment, where there are only two possible outcomes, such as success
or failure, heads or tails, black or white pixel level, etc. It is a special case of the binomial
distribution, where there is only one trial. The pmf of a Bernoulli distribution is defined
as follows:

P (X = x) = px(1− p)1−x (2.3)

where x ∈ {0, 1}. The Bernoulli distribution is characterized by a single parameter, p,
which is the probability of success (and thus, 1 − p is the probability of failure) in the
binary experiment. The mean of a Bernoulli random variable is given by E[X] = p, and
the variance is given by V ar[X] = p(1 − p). In this thesis, the Bernoulli distribution
will be employed for modeling the likelihood of black/white image pixels, as well as for
variables of binary nature in tabular datasets.

It is essential to note that when the Bernoulli distribution is used to model the likeli-
hood of data, the following loss function is typically minimized with respect to the model
parameters:

Hp(x) = E[− log p(x)] = −x · log p− (1− x) · (1− p) (2.4)

This function is known as the Binary Cross Entropy and measures the uncertainty
handled by the binary distribution. If the observation is positive (x = 1), the second term
is canceled, and the first term is minimized. Conversely, if the observation is negative
(x = 0), the first term is canceled, and the second term is minimized. In simple terms,
the parameters are optimized to make the model more accurate in assigning probabilities
closer to 0 (for negative observations) and 1 (for positive observations).

The Categorical Distribution

The Categorical distribution generalizes the Bernoulli to multi-class outcomes. A sam-
ple x ∈ {1, ...,K} indicates a category over K possibilities. The Categorical distribution
is parameterized by a vector of probabilities per category, p, with K − 1 degrees of free-
dom, since the K-th element is determined as pK = 1−∑K−1

k=1 pk. The probability mass
function of a Categorical distribution is given by

p(X = x) =

K∏
k=1

p
Jx=kK
k (2.5)

where J·K denotes the indicator function, which returns 1 when k coincides with the
category of the outcome x. In this thesis, the Categorical distribution will be employed
for modeling the likelihood of variables of categorical nature in tabular datasets.
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2.1.2. Kullblack-Leibler divergence and Mutual Information

The dissimilarity (or divergence) between probability distributions p(x) and q(x) can
be quantified with the Kullblack-Leibler divergence (or KL divergence), also de-
noted as relative entropy. For continuous variables, it is defined as

DKL(p(x)||q(x)) =

∫
x

p(x) log
p(x)

q(x)
dx, (2.6)

whilst for discrete variables, the integral gets replaced by a sum. Some remarkable prop-
erties are:

The KL divergence is not symmetric in the two distributions, meaning that generally
DKL(p(x)||q(x)) 6= DKL(q(x)||p(x)). Consequently, it is not a distance metric.

The KL divergence is always positive, DKL(p(x)||q(x)) ≥ 0 with equality if and
only if p = q.

For some distributions, the KL divergence is properly defined in closed-form. For in-
stance, consider twoD-dimensional Gaussians, p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq).
The expression of the KL divergence between them is:

DKL(p(x)||q(x)) =
1

2

[
log
|Σq|
|Σp|

−D + (µp − µq)TΣ−1q (µp − µq) + tr(Σ−1q Σp)

]
(2.7)

More specifically, if q(x) is the standard Gaussian N (x; 0, I), i.e. µq = 0,Σq = I and
p(x) is a factorized Gaussian p(x) = N (x;µ,σ2

pI), where σ2
p = [σ2

1 , ..., σ
2
D], then (2.7)

becomes:

DKL(p(x)||q(x)) =
1

2

D∑
d=1

(
− log

(
σ2
d

)
− 1 + µ2

d + σ2
d

)
, (2.8)

as demonstrated in (Kingma and Welling, 2013). This expression will be recurrently used
throughout this thesis, as it will be discussed in Chapters 3, 4 and 5.

Another important measure, when considering two random variables X and Y , that is
more robust measure of statistical dependence, compared to the linear correlation coeffi-
cient, is the mutual information, or MI, which is closely related to the KL divergence,

I(X;Y ) = DKL(p(X,Y )||p(X)p(Y )) =

∫∫
X,Y

p(x,y) log
p(x,y)

p(x)p(y)
dxdy. (2.9)

The mutual information can be understood as the similarity between the joint distribution
p(X,Y ) and the factored distribution p(X)p(Y ). In the extreme case of independency,
we obtain that p(X,Y ) = p(X)p(Y ) and so I(X;Y ) = 0.

2.1.3. Bayesian Inference

Likelihood distribution

The likelihood distribution is a function that measures the goodness of fit of a statis-
tical model to the observed data. Given a set D and a statistical model with parameters
θ, the likelihood distribution maps the model parameters to the probability of observing
D for a particular set of parameters, in the form p(D|θ). The likelihood can be used to
perform both the learning task, which consists on finding the model parameters that fit
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best to D, via maximum likelihood, or the inference task: which consists on obtaining
the posterior probability of the parameters θ of interest after observing D, i.e. p(θ|D).
It is particularly useful in situations where the data generating process is unknown and
must be estimated from the observed data.

Although θ has been used in the definition as the set of parameters of interest for
conditioning data, the likelihood can be also employed for conditioning the data generation
on unobserved variables of a statistical model. As it will be discussed later in this thesis,
and specifically in Section 2.2.1, in latent variable models, the considered likelihood would
also be pθ(x|z), parameterized by θ, and the marginal likelihood

∫
z
pθ(x, z)dz would be

only on the parameters, after integrating the latent variables. Throughout this thesis,
both definitions will be employed at different points, always trying to clearly differentiate
between them.

Bayes theorem

The Bayes theorem, also known as Bayes rule, is a fundamental result in probability
theory that provides a way to update beliefs about an event based on new evidence. It
relates the prior probability, which measures the initial belief about an event before any
new information has been taken into account, to the posterior probability, which refers
to the updated belief after the new information has been incorporated.

Mathematically, it can be defined as follows. Let A and B be two random variables.
The posterior distribution of A indicates how this variable is distributed after observing
B, i.e. based on the evidence, and is given by

p(A|B) =
p(B|A)p(A)

p(B)
. (2.10)

The first term of the numerator p(B|A) is referred to as the likelihood, already described
in Section 2.1.3, whilst the second term of the numerator, p(A), is the prior, which
models the initial belief of the probability of A. The numerator can also be expressed as
p(A,B) = P (B|A)P (A) = P (A|B)P (B), which is referred to as the joint distribution of
A and B.

Bayesian Inference

Under a probabilistic model framework, the Bayes theorem can be utilized as follows.

p(θ|D) =
p(D|θ) p(θ)

p(D)
. (2.11)

The first term of the numerator is the likelihood of the data, already described in Section
2.1.3, whilst the second term of the numerator is referred to as the prior of the parameter,
which models the initial belief of the probability of θ. The denominator is referred to as
the evidence term, or the marginal likelihood, since it is the marginal distribution
p(D) =

∫
θ
p(D, θ)dθ. As a consequence, it is the normalizing constant of the posterior

distribution, typically denoted by Z in the literature.

Although the notation θ typically refers to the parameters of a model, the Bayes
theorem can be used for the inference of unknown or latent variables. Latent Variable
Models (Section 2.2.1) are one of the most crucial types of generative models, and comprise
a fundamental pillar of the present doctoral thesis. Within these models, latent variables

13



z of reduced dimension are involved in the generation of data via pθ(D|z). Hence, the
posterior of the latent variables can be obtained using the Bayes theorem

p(z|D) =
p(D|z) p(z)

p(D)
. (2.12)

One of the key advantages of employing Bayesian inference is that it provides a coherent
way of incorporating prior knowledge into the modeling process. This prior knowledge can
take many forms, such as expert opinions, previous studies, domain-specific knowledge
or inductive bias and it can be expressed as a probability distribution over the unknown
variables.

Another advantage of Bayesian inference is that it allows for the quantification of un-
certainty in the estimates of the model parameters or latent variables. This is achieved
by computing the posterior probability distribution, which provides a range of plausible
values for the parameters along with their associated probabilities. This posterior distri-
bution can be used to make probabilistic predictions about future observations, to assess
the impact of different sources of uncertainty on the model, and to perform sensitivity
analyses.

Typically the numerator in (2.12) is known, i.e. the unnormalized posterior can be
evaluated, since the likelihood and prior in p(D, z) = p(D|z)p(z) are parameterized. In
many scenarios, to learn the parameters of a model, θ, this function needs to be integrated
to obtain the named log marginal likelihood

log p(D) = log

∫
z

pθ(D, z)dz, (2.13)

which coincides with the normalizing constant of the posterior. In the simplest cases, these
parameterizations are such that this constant (and so the posterior) is tractable. However,
as it will be discussed later, more complex function approximators (e.g. deep neural
networks) lead to the intractability of the posterior. Some efficient techniques allow for
sampling from approximately the posterior distribution when knowing the unnormalized
posterior.

Monte Carlo approximation

As discussed in the previous section, Bayesian Inference allows for uncertainty quan-
tification by using a posterior distribution based on the evidence and prior knowledge.
Although Monte Carlo methods can be applied to a wide range of problems such as
integration, optimization, simulation, this thesis focuses on its application to Bayesian
inference. For the case of interest, MC methods are involved in the approximation of the
expectation under intractable distributions. For instance, in latent variable models, the
named posterior predictive is given by

Ep(z|x) [p(x∗|z)] =

∫
z

p(x∗|z)p(z|x)dz, (2.14)

where the notation Ep(z) [f(x, z)], refers to the expectation operator of a function
f(x, z) that depends on a random variable z under a probability distribution p(z).

Two problems need to be addressed for solving (2.14). First, the tractability of the
expectation, which occurs only for simplistic models and thus, typically requires an ap-
proximation. Second, the posterior distribution is neither tractable in practical cases,
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where likelihood distributions are parameterized by complex functions, as it will be dis-
cussed later.

Regarding the former, in general, the expectation of a function depending on a random
variable z, under a distribution p(z) can be estimated by means of the simplest Monte
Carlo (MC) approximation (Metropolis and Ulam, 1949)

Ep(z) [f(z)] =

∫
z

f(z)p(z)dz ≈ 1

S

S∑
s=1

f(zs), (2.15)

which consists on generating a large number of samples from the target distribution and
use them to approximate the quantity of interest by uniformly weighting each term, i.e.
by averaging. The accuracy of the approximation depends on the number and quality
of samples. For complex distributions, poor samples that not accurately follow the true
target lead to biased, high-variance estimations of the quantity of interest.

Further, the computation of the posterior distribution, p(z|x), in both cases where
the variables to be inferred are parameters, as in (2.11), or latent variables, as here and
in (2.12), requires to obtain the named evidence constant by marginalizing the variables
of interest. For this purpose, the following integral needs to be resolved

Z = p(x) =

∫
z

p(x, z)dz, (2.16)

which in some cases can be extremely hard to solve or actually computationally or math-
ematically intractable, and consequently, posterior evaluation is not tractable.

Considering this two problematics, the basic idea presented in (2.15) is not generally
sufficient for performing Bayesian Inference. More advanced MC methods aim at ob-
taining these high-quality samples when complex distributions are to be sampled from.
For instance, in importance sampling, the variance of the estimation is reduced by
using samples from a second distribution, q(z), referred to as proposal, and measure their

importance by computing p(x,z)
q(z|x) . The resulting approximation is

Ep(z|x) [p(x∗|z)] ≈
S∑
s=1

w̃s p(x
∗|zs) (2.17)

where ws = p(x,z)
q(z|x) and w̃s = ws∑S

s=1 ws
. This idea, as it will be discussed in Section 3.5

is exploited in the IWAE model (Burda et al., 2015) for improving the lower-bounded
estimation of the log-likelihood of the model.

Markov Chain Monte Carlo

The expectation is computed by summing the integrand in (2.15) for infinitesimal
volumes dz following p(z), and approximated by discretizing the parameter space using
samples. As discussed in (Betancourt and Girolami, 2015), for the regions around the
mode, whilst the density is larger, the volume contribution is low. On the contrary, regions
far from the probability mass have lower contributions on the density, but their volume
is higher. Further, this problematic increases with the dimension of the target space. In
MC approximations, samples from these two regions can lead to poor approximations.
However, there is a specific region that dominates the expectations, named the typical set
(Betancourt, 2017), and Monte Carlo MC methods focus on approximating expectations
by using samples from the typical set.
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Figure 2.3: Illustrative example of MCMC for sampling from target p(z).

In Markov chain Monte Carlo (MCMC), a Markov chain is employed for ex-
ploring the typical set that dominates the expectation estimations, and thus, it allows
for more accurate approximations. An illustrative example is provided in Figure 2.3. A
properly designed Markov chain can progress through the parameter space by sequentially
accepting/rejecting new states proposed by a random map, denoted as Markov transition.
Mathematically defined as T(z′|z), it defines the probability distribution of the next state
z, given the current state z, and it preserves the target distribution, meaning

p(z) =

∫
z

p(z′)T(z|z′)dz′. (2.18)

In broader terms, applying the transition over a set of samples from p(z) would lead to a
new set of samples that follows the same distribution p(z).

Of remarkable consideration among the MCMC variants is Hamiltonian Monte
Carlo (HMC) (Neal et al., 2011; Betancourt and Girolami, 2015), due to its efficiency
in exploring high-dimensional targets by exploiting the geometry of the typical set, that
leads to an improved computational efficiency when compared with the alternatives and
proved improvement of the estimator. This technique will be extended in Chapter 5 of
this thesis, when presenting the second principal contribution (Peis et al., 2022), where
a careful design allows for using HMC in combination with powerful probabilistic models
such as Hierarchical Variational Autoencoders.

2.2. Generative Models

This section introduces the concept of generative modeling, The model illustrated in
Figure 2.2c can also be referred to as a generative model. The reason is that, once
properly trained, the learned distributions can be used for sampling new synthetic data,
that ideally would look like the observed real data. Specifically, from p(x,y), p(x) can
be used for getting new data x∗, whilst p(y|x∗) can be used for generating the label for
each new datapoint. Although a large list of potential benefits of using this generative
approach could be listed, some of the most important ones are:

It allows for detecting outliers, i.e. points that does not follow the true manifold of
the data. The black cross in Figure 2.2 represents this concept. Observed datapoints
where p(x∗) is low can be detected for requesting their labels or regenerating them.
Also called anomaly detection, the detection of datapoints with low probability
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is relevant to several usecases, like network intrusion detection, medical diagnosis,
fraud detection or manufacturing defect detection, among others.

In the context of decision making, it can properly weight a decision. In the
binary classification example, instead of using a hard decision of positive/negative,
regardless of how far a test point is from the decision boundary, a generative model
accounts for the distance to the boundary and in general, the likelihood under the
learned distributions. This can be of vital importance in critical decisions such as,
for example, determining whether a patient is at high risk of developing a certain
disease, or assessing the risk of an investment, taking into account the uncertainty
of the future market conditions.

The uncertainty captured by the model can be employed for assessing real uncer-
tainty about the environment. To give an example: detecting consecutive outliers
in a sensing system could be a potential indicator of sensor failure.

Generative models can be used to perform data augmentation, i.e. artificially
expand the size and diversity of datasets by generating synthetic examples that
mimic the existing data. This can help to improve the accuracy and robustness of
machine learning models, overcoming limitations such as data scarcity and imbal-
anced datasets. By generating synthetic data, generative AI models can help to
improve decision making and predictions.

2.2.1. Latent Variable Models

In Latent Variable Models (LVMs), complex distributions at the observation level
are captured by simpler conditional distributions at the latent level, which usually have
lower dimensionality. The latent space has the potential to capture the real underlying
processes that generated the observed data. As an illustration, in Figure 2.1, the hand-
written MNIST images may have a latent code that represents the digit’s shape, width,
orientation, etc., and thus, a trained model would distribute the latent space based on
these factors. This key feature of latent variable models allows for potential interpretabil-
ity of their latent space when compressing generative factors. This relationship between
the latent properties and generative factors is commonly known as disentanglement,
which will be further discussed in Section 3.8.1 of this thesis.

In general, when defining a latent variable model, one of the final objectives is to
train it properly for getting meaningful posteriors over observations, whilst accurately
reconstructing observed data. In mathematical terms, given a datapoint x, the posterior
p(z|x) can be obtained using the Bayes theorem (2.12) and ideally would be informative
of the characteristics of x. The marginal likelihood distribution is obtained by computing
the expectation Ep(z|x)(p(x|z)).

The nature of the latent variables can be of different types. On the one hand, discrete
latent variables can account for multiple modalities in the data, as in the case of Mixture
Models, which will be described below. On the second hand, continuous latent variables
can model the mentioned underlying factors being compressed into a reduced latent space,
being Probabilistic Principal Component Analysis the simplest approach.

Mixture Models

In Mixture Models, a set of K components is modeled by a Categorical latent vari-
able p(z) = Cat(π) (Section 2.1.1), where the discrete parameter space is z ∈ {1, ...,K}.,
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and π is the learnable vector of probabilities per component, being πk = p(z = k). With
probability πk, a generated point would follow the k-th distribution p(x|θk), where θk
is the set of parameters that define the corresponding likelihood distribution. The joint
probability of the model is given by

p(x, z) =

K∏
k=1

(πk p(x|θk))
Jz=kK

(2.19)

Note that to evaluate the joint distribution, z requires to be known. Nevertheless, it is
defined as a latent variable (unobserved), and due to this reason, the marginal likelihood
can be obtained by integrating it, which in this case, since z is discrete, is equivalent to
summing over the parameter space

p(x) =

K∑
k=1

πk p(x|θk). (2.20)

Another quantity of interest, as mentioned in the previous subsection, is the posterior
over the latent variables p(z|x). Using the Bayes theorem, it can be expressed as

p(z = k|x) =
πk p(x|θk)∑K
k=1 πk p(x|θk)

. (2.21)

each of the posterior probabilities,
To provide with an illustrative example, in Figure 2.4 a Gaussian Mixture Model

(GMM) is depicted, where K = 3 and each of the components is a Gaussian distribution,
i.e. θk = {µk,Σk} and thus p(x|θk) = N (µk,Σk). The probability mass assigned to
the k-th Gaussian component is modulated by the prior probability πk. In the example,
π = [0.4, 0.3, 0.3].

Given a dataset D = {x1, ...,xN}, the optimal parameters of the mixture, namely π
and θ, would be those that maximize the log marginal likelihood of the observed data

log p(D; θ) =

N∑
n=1

log

(
K∑
k=1

p(xn|zk)

)
. (2.22)

By setting the derivatives of (2.22) to zero with respect to each parameter, it is obtained

µk =
1

Nk

N∑
n=1

p(zn = k|x)xn,

Σk =
1

Nk

N∑
n=1

p(zn = k|x)(xn − µk)(xn − µk)T

(2.23)

which, as it can be appreciated, does not constitute a closed-form solution, since the
optimal parameters depend on the posteriors p(zk|x), that also depends on the parameters
themselves. To solve this issue, an elegant method named Expectation-Maximization
(EM) is typically employed for performing the following two steps in an iterative manner:

1. The E-step, where the posterior probabilities per datapoint and component are

obtained as p(z
(n)
k |x(n)) fixing θ.

2. The M-step, where fixing p(z
(n)
k |x(n)), the parameters θ are updated using (2.23).
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Figure 2.4: A Gaussian Mixture Model of K = 3 components, with π = [0.4, 0.3, 0.3].

The log-likelihood is guaranteed to increase within each iteration of the algorithm.
The EM method can also be adapted to a wide spectrum of latent variable models, where
in the E-step the posterior over latents is obtained, and in the M-step the parameters are
updated. In this thesis, a mixture model will be employed in Chapter 4 for increasing the
flexibility of the latent space. Nevertheless, due to the usage of more complex probabilistic
connections (via neural networks), the optimization of its parameters will not follow the
EM algorithm, but other methods such like amortized variational inference that will be
extensively discussed in the corresponding sections.

Probabilistic Principal Component Analysis

Principal Component Analysis (PCA) is one of the most widely employed tech-
niques for dimensionality reduction, lossy data compression, feature extraction and data
visualization. It is based on the Karhunen-Loève transform, and consists on learning the
(linear) orthogonal projection of the data onto a lower dimensional latent space that leads
to the minimum reconstruction error, measured as the mean squared error between the
data and the projections, or equivalently, the maximum variance in the projected space.

Mathematically, PCA can be defined as follows. Given a dataset X = {xT1 , ...,xTN}
with points xn ∈ RD, represented with blue dots in Figure 2.5a, the PCA solution
is the matrix U with dimensions D ×M , whose columns are the orthonormal vectors
{u1, ...,uM}, represented with red arrows in Figure 2.5a, such the transformed data,
Z = {zT1 , ...,zTN} with coordinates zn = [uT1 xn, ...,u

T
Mxn] (or expressed in matrix nota-

tion, Z = XU), exhibits the maximum variance, as depicted in Figure 2.5b. It can be
demonstrated (Bishop and Nasrabadi, 2006; Murphy, 2012) that these optimal vectors
um that maximize the variance and minimize the reconstruction error of the transformed
data are the eigenvectors of the empirical covariance matrix, S, defined as

S =
1

N

N∑
i=1

(xn − x̄)(xn − x̄)T , (2.24)

where x̄ is the empirical mean given by x̄ = 1
N

∑N
i=1 xn. The order of the PCA projection
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Figure 2.5: PCA illustrative example. A bivariate synthetic data (blue dots) is depicted
in (a). PCA principal components u1,u3 are plotted as red vectors. In (b), tranformed
points z are plotted. In (c), projections z1, z2 are plotted separately using different colors.

vectors is given by the bigger eigenvalues of the same matrix, that also quantify for the
explained variance, i.e. the amount of variance that is accounted within each projection.

PCA can be also expressed in terms of a probabilistic latent variable model. In
such definition, named Probabilistic PCA (Tipping and Bishop, 1999). Instead of
considering a linear deterministic compression, the data is linearly compressed into a
parameterized Gaussian latent space (posterior), with standard prior p(z) = N (0, I).
Data is generated by decompressing from the latent space, using a linear transformation
for obtaining the Gaussian likelihood parameters

p(x|z) = N (Wz + µ, σ2I). (2.25)

where the mean is given by the linear operation Wz + µ, governed by the matrix W
of dimensions D ×M . The choice of the variance, σ2I makes the dimensions of x to
be factorized. The role of W can be compared to the named U in the non-probabilistic
version of PCA, since they define a linear data subspace. The goal is to learn W , µ and
σ2. Once the parameters W ,µ and σ2 are obtained for a dataset, new similar data can
be simply generated by using x = Wz+µ+ ε, where ε is a sample from Gaussian noise,
i.e. with zero mean and covariance σ2I.

To find the optimal parameters, a Maximum Likelihood strategy can be derived for
Probabilistic PCA. The data log likelihood follows

log p(X;W ,µ, σ2) =

N∑
n=1

logN (xn;µ,C), (2.26)

where the parameters µ,C of the distribution p(xn) =
∫
z
p(x|z)p(z)dz = N (xn;µ,C)

can be obtained in closed form, thanks to the simplicity of the linear operations. As it
will be discussed later, more complex transformations (i.e. given by neural networks) will
make this integral intractable, and will lead to the impossibility of obtaining the data
likelihood in close form. The covariance matrix C is given by C = WW T + σ2I. It can
be demonstrated (full derivation can be read in Bishop and Nasrabadi (2006)) that the
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ML solution is given by

µML = x̄ =
1

N

N∑
n=1

xn (2.27)

σ2
ML =

1

D −M
D∑

i=M+1

λi (2.28)

WML = UM (LM − σ2I)1/2R, (2.29)

where λi are the eigenvalues, making σ2
ML is the average variance of the discarded di-

mensions. The matrix UM with dimensions D × M has at columns the subset of M
eigenvectors of the data covariance matrix S. The diagonal matrix LM contains the
corresponding eigenvalues λi in its diagonal, and R is any rotation (orthogonal) matrix,
leading to rotation invariance in the compressed space. It its simplest form, R = I.

Although the ML solution can be computed in closed-form, the EM algorithm pre-
sented in Section 2.2.1 can be adapted to PCA and its variants when spaces of high-
dimensionality increase the computational cost of the ML solution (mainly matrix inver-
sion and eigendecomposition). In the E-step, the posterior parameters are obtained for
the corresponding parameters state. In the M-step, the posterior parameters are used for
updating the learnable parameters.

Thanks to the design of the model, by using the Bayes theorem, the posterior distri-
bution p(z|x) can be derived (using 2.116 in Bishop and Nasrabadi (2006)) as

p(z|x) = N (z; M−1W T (x− µ), σ2M−1). (2.30)

Having learned the parameters, the posterior mean depends on the datapoint x (the
posterior covariance is independent). By graphically representing the two first components
of the posterior mean, meaningful interpretations can be obtained. In Figure 2.6 a simple
illustrative example is depicted, where different images representing the same digit are
projected into close regions of the latent space, separated from regions for other digits.

2.3. Deep Learning

In the previous sections of this thesis, the complexity of the functions involved in
parameterizing probability densities has been mentioned several times. In general, the
complexity can be extended to any type of function that capture essential information
from the data to perform any desired task. This complexity is referred to as the ability
to extract useful information from the data. Nevertheless, it is of vital importance that
the data itself contains useful information. In other terms, designing the appropriate
set of features to tackle a Machine Learning task is a common way to solve it. For
instance, obtaining the frequency spectrum of an audio signal via the Fourier transform
is an useful set of features in identifying speaker gender in sound recordings. However, it
can be challenging to determine the necessary features for many tasks, such as recognizing
cars in photographs, where it is difficult to define the characteristics of an object, such as
wheels, in pixel terms. Shadows, glare, and obstructions can further complicate matters.

One solution is representation learning, which uses machine learning to identify
the mapping between representation and output, as well as the representation itself. This
approach has several advantages, including better performance and rapid adaptation to
new tasks. Manually designing features for a complex task requires a significant amount
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Figure 2.6: Probabilistic PCA illustrative example. In (a) 8×8 image samples are showed
from a training set of digitis (x ∈ R64). In (b), the bidimensional latent space z ∈ R2 of
Probabilistic PCA is depicted by plotting the mean of the posterior of (2.30).

of time and effort, sometimes spanning decades. Representation learning algorithms can
find appropriate features for simple tasks in minutes or complex tasks in hours, with
minimal human intervention.

When designing features or algorithms for learning features, our goal is usually to
separate the factors of variation that explain the observed data. Such factors are often
not quantities that are directly observed. Instead, they may exist either as unobserved
objects or unobserved forces (latent) in the physical world that affect observable quanti-
ties. The goal when designing features or algorithms for learning features is to separate
the factors of variation that explain the observed data. These factors refer to separate
sources of influence, and they can be objects or forces in the physical world or constructs
in the human mind that provide useful explanations or inferred causes. They can help
make sense of the data’s rich variability. However, many of these factors influence every
piece of data we observe, making it difficult to disentangle them and focus on what is
essential.

Identifying high-level, abstract features from raw data can be challenging, and some
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factors require sophisticated, nearly human-level comprehension. When obtaining a rep-
resentation is almost as difficult as solving the original problem, representation learning
may not seem helpful. However, deep learning solves this issue by introducing abstrac-
tions expressed in simpler representations, allowing the computer to construct complex
concepts automatically.

In Figure 2.7 an illustrative example is provided. At the right part of the image,
a dataset is showed, composed by two radial groups of datapoints with binary target.
Thus, binary classification is considered. If a linear model (logistic regression) of type
p(y = 1) = σ (w0 + w1x1 + w2x2) was to be learned from the data, being p(y = 1) the
positive class probability and σ the sigmoid function, it would be not possible to find any
line that defined a decision boundary for separating the two classes. Additional feature
engineering would be required. For example, by transforming the original data to be
expressed in polar coordinates, namely, computing the radius by r = ‖x‖, and the angle

a = arctan(
x2
x1

), each datapoint [x1, x2] would be transformed to [r, a]. Furthermore, even

by using only the radius r accurate classifications would be performed. On the contrary,
the Multi-Layer Perceptron model depicted in Figure 2.7 automatically performs the
representation learning when fed with the [x1, x2] coordinates. By stacking three hidden
layers of [4, 4, 2] neurons respectively, each of them activated by simple linear operations
on the previous layer, followed by a non-linear activation, a test error of 0.0 is achieved
after a few optimization steps.

A more detailed discussion on Multi-Layer Perceptron and more advanced deep learn-
ing architectures is provided in the following subsections.

2.3.1. Multi-Layer Perceptrons

Multilayer Perceptrons (MLPs), also referred to as deep feedforward neural net-
works, are the pillar of deep learning models. Their goal is to approximate some function
f∗ for mapping inputs to outputs, following y = f∗(x). For instance, revisiting the exam-
ple from Figure 2.7, the function to approximate the mapping from bidimensional inputs
to a binary target.

To do so, MLPs stack a set of L hidden layers in a chain. The length of this
chain defines the depth of the network, being the last layer typically referred to as
output layer. If L = 3, the learned function that approximates the unknown f∗ is
f (3)(f (2)(f (1)(x))). The behavior of the hidden layers, which do not directly receive
desired output from the training data, must be determined by the learning algorithm
to achieve the accurate approximation of f∗. The output of each hidden layer l of the
network is a vector-valued, denoted as h(l), composed by a set of hidden units, and the
dimensionality of these hidden layers determines the width of the model. Each element
of the vector may be interpreted as playing a role analogous to a neuron, and the layer
can be thought of as consisting of many units that act in parallel. The idea of using
many layers of vector-valued representation is drawn from neuroscience. The functions
used to compute these representations are loosely guided by neuroscientific observations
about the functions that biological neurons compute. When MLPs incorporate feedback
connections, they are referred to as recurrent neural networks (Section 2.3.3).

The function applied at each layer is typically given by

h(l) = f (l)(h(l−1)) = g(W (l)h(l−1) + b(l)), (2.31)

where g applies for any non-linear function with some required properties, typically re-
ferred to as activation function. Widely employed activation functions include the
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Figure 2.7: Multi-Layer Perceptron example. An MLP of 3 hidden layers with [4, 4, 2]
units, respectively, using hyperbolic tangents as activation, is trained to classify data
x ∈ R2 into two categories, y ∈ {−1, 1}. The colormap shows the function p(y|x) = f(x)
model individually by each unit and the final predictive distribution p(y|x). Example
obtained from https://playground.tensorflow.org/.

Hyperbolic Tangent, or more advanced techniques such as the Rectified Linear Units
(ReLU, Nair and Hinton (2010)). In other words, each hidden layer is obtained by, first,
using a linear transformation of the previous layer, and second, applying a non-linearity
in order to represent non-linear functions of the input. In (2.31), W (l) and b(l) represent,
respectively, the weight matrix and the biases for the l-th linear transformation. Thus,
the set of parameters to be learned during training a MLP are θ = {WL

l=1, b
L
l=1}.

2.3.2. Convolutional Neural Networks

When the data to extract information from is of grid-like structure, Convolutional
Neural Networks (CNNs, LeCun et al. (1989)), are the neural architecture that excels.
This data type includes time-series data, which can be thought of as a 1D grid sampled
at regular (or irregular) time intervals, and image data, which can be represented as a
2D grid of pixels. An example of a CNN architecture (the well-known VGG16 network
from Simonyan and Zisserman (2014)) is included in figure 2.8. CNNs are based on a
mathematical operation known as convolution, which is a linear operation that involves
sliding a filter (also referred to as kernel) over the input data to produce a feature map.
For instance, the output of a 2D convolution over a discretized grid is

Y (i, j) = (X ∗K)(i, j) =

W∑
w=1

H∑
h=1

X(i+ w, j + h)K(w, h), (2.32)

where (W,H) are the width and height parameters that define the kernel size. This
operation is used in place of the general linear transformation discussed for MLPs in
Section 2.3.1. To fully describe a CNN, additional parameters involved in the convolution
operation need to be considered. The padding, defined by sizes (pi, pj), adds a frame
to the borders of the input grid, being typically zero-valued, in order to avoid shrinking
the input size. The stride parameter defines the resolution of the indices i, j, or the shift
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Figure 2.8: Convolutional Neural Network example. The VGG16 network architecture
(Simonyan and Zisserman, 2014).

centers to apply the kernels. In other words, by choosing a stride of (si, sj), the indices
would be i′ = si × i and j′ = sj × j.

Stacked to the convolutional operation, a second stage with a non-linear activation
is applied, with the same motivation than in MLPs. In a third stage, typically a pool-
ing operation is included, that replaces the convolutional outputs at each location by a
statistical summary of their neighbors. Max pooling or average pooling are typical
choices, where the latter outputs the average of the selected neighbors, and the former
outputs the maximum. Thanks to this last operation, a strong prior is added to the task
of learning patterns from grid-type data, in the sense that those learned patterns must
be invariant to small translations. These three stacked operations define a hidden layer
in CNNs.

For MLPs, as discussed in Section 2.3.1, the hidden units are the outputs of each simple
operation on the previous set of hidden units performed within each layer. Grouping the
units in a vector gives h(l) = f (l)(f (l−1)(...f (1)(x))). Equivalently, in the context of CNNs,
the hidden units are typically referred to as output channels. To learn each channel,
a parallel kernel (applied over the same input) with independent learnable weights is
defined. Thus, the group of parallel convolutional operations outputs a set of images that
can be stacked, typically referred to as the hidden layer or representation.

CNNs have proven to be highly effective in real-world applications when spatial or
temporal patterns are to be captured for performing downstream tasks. To list some
examples, (Krizhevsky et al., 2017; Simonyan and Zisserman, 2014; Szegedy et al., 2015;
He et al., 2016a) are successful models in image classification, (Zhao et al., 2017; Pelletier
et al., 2019) achieve astonishing results using CNNs for time series, and (Goodfellow
et al., 2020; Radford et al., 2015; Van den Oord et al., 2016; Salimans et al., 2017) build
highly expressive generative models based on CNNs (this last example will be extended
in Section 2.4 below).

2.3.3. Deep Recurrent Neural Networks

Deep Recurrent Neural Networks (RNNs) are a type of neural network designed
for modeling sequential data. These networks are better designed to handle sequences
of values, similarly to how CNNs handle grids of values such as images. They present a
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(a) Deep RNN (b) LSTM (c) GRU

(d) A general diagram for RNNs

Figure 2.9: Examples of Recurrent Neural Neworks. In (a), (b) and (c), the most ex-
tended architectures for the function to be applied at each state are represented. In (d),
‘rolled’ and ‘unrolled’ version for sequences is depicted, being the green boxes one of the
architectures in (a), (b) and (c).

parallel advantage when compared to CNNs: they easily scale to sequences of variable
length, and further, much longer sequences than regular networks that are not sequence-
based. The way they achieve this is by sharing parameters.

The idea of sharing parameters across different parts of the data or the model can be
placed back to the machine learning research of the 1980s (Rumelhart et al., 1985). It
allowed to build models that learn from observations of variable size, i.e. sequences with
different lengths. Parameter sharing enables to generalize across positions in time, which
would not be possible if separated parameters were applied to different time indices. i.e.
if MLPs where to be used for learning from sequences. This sharing of statistical strength
is especially crucial when specific information can occur at multiple positions within the
sequence and allows to avoid overfitting to the training set and to generalize to new
examples. The origins of parameter sharing for discovering termporal patterns can be
placed to the 1980s, when several variants were studied, being Elman networks (Elman,
1990), Jordan networks (Jordan, 1990), echo state networks (Jaeger, 2001) and time-delay
neural networks (Lang, 1988; Waibel et al., 1989; Lang et al., 1990) the most importante
ones.

CNNs would apply for parameter sharing in temporal sequences if their 1D version is
considered. Nevertheless, the field is restricted to learn only from a set of neighbors at
each step. RNNs operate in a different manner, more adequate to sequential data. The
output of each hidden function directly depends on all the previous outputs (Figure 2.9d),
and is produced by the same update rule

h(t) = fθ(h(t−1),x(t)), (2.33)

thus sharing the parameters. The unfolded function at each state can be expressed as

h(t) = g
(t)
θ (x(t),x(t−1),x(t−2), ..., ,x(1)). (2.34)

More specifically, the recurrent functions to be applied at each state are in the form of
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the presented ones for MLPs and CNNs, i.e.

h(t) = σ(x(t)W T
ih + bih + h(t−1)W T

hh + bhh) (2.35)

where σ is again a non-linear activation, typically tanh or ReLU (Nair and Hinton, 2010).
This approach allows for learning recurrent patterns from considerably deeper se-

quences than with a CNN approach. Thus, RNNs stand out in applications where se-
quences are of high length, e.g. Electronical Health Records (EHR).

In a paper published in the initial stage of this thesis, (Peis et al., 2019), RNNs were
employed to learn hidden representations from two asynchronous sources of sequential data
from patients: EHR data from the hospital, and personalised data (Ecological Momentary
Assessment, EMA) collected via a smartphone application. These hidden representations
we employed as inputs to a classifier for predicting suicidal ideation probability in a cohort
of psychiatric patients.

More advanced to this presented initial setting for deep RNNs are the named gated
RNNs, being the most extended ones the Long Short-Term Memory networks
(LSTMs, Hochreiter and Schmidhuber (1997)) and the Gated Recurrent Units (GRUs,
Chung et al. (2014)). They stand due to solving one of the main issues associated to train-
ing vanilla RNNs. As it will be discussed in the next subsection 2.3.5, the gradients of
the loss to be minimized with respect to the parameters of the model, are computed by
creating backwards paths and using the chain rule. When these temporal paths are too
deep, the propagated derivatives might vanish or explode, ending in the two problems
referred to as vanishing gradients and exploding gradients, respectively.

RNNs and its advanced versions have been successfully applied to neural translation
via sequence-to-sequence (Sutskever et al., 2014; Bahdanau et al., 2014), text or hand-
writing generation (Graves, 2013), speech recognition (Graves et al., 2013; Graves and
Jaitly, 2014) or audio generation (Oord et al., 2016), to name a few examples.

2.3.4. Advanced architectures

Below, three of the architectures that have resulted the most relevant in the recent
literature are briefly described.

Transformers

Transformer Networks are a type of sequential neural architecture that have revolu-
tionized the field of natural language processing (NLP) and other sequence related fields.
They were firstly introduced by Vaswani et al. (2017), and have since become the back-
bone of striking state-of-the-art generative models such as BERT (Devlin et al., 2018) or
GPT (Radford et al., 2018) and its continuations (Radford et al., 2019; Brown et al., 2020;
OpenAI, 2023), AlphaFold (Jumper et al., 2021) or Jukebox (Dhariwal et al., 2020), to list
some examples. The key innovation of Transformer Networks is their ability to capture
long-range dependencies in text by using self-attention mechanisms. Self-attention allows
the model to weigh the importance of different words in a sentence when making pre-
dictions, which is particularly useful for tasks such as language translation and question
answering.

The architecture of a Transformer Network is composed of an encoder and a decoder,
each consisting of multiple layers of self-attention and feedforward neural networks. Dur-
ing training, the model learns to encode the input text into a sequence of vectors that
preserve the semantic meaning of the words in the text. These encoded vectors are then
used by the decoder to generate the output text. One of the advantages of Transformer

27



Networks is that they are parallelizable, making them computationally efficient for train-
ing on large datasets. Additionally, they have been shown to be effective at transfer
learning, where a model trained on one task can be fine-tuned for a different task with
minimal additional training.

Overall, Transformer Networks represent a major advancement in sequence modeling
and have opened up new research directions in the field.

ResNets

Residual Networks (ResNets, He et al. (2016a)) are a type of deep neural network
architecture that were introduced to address the vanishing gradient problem in very deep
networks. The vanishing gradient problem arises when the gradient of the loss function
with respect to the parameters becomes very small, making it difficult to update the
weights in the earlier layers of the network.

In ResNets, a residual block is introduced that allows for shortcut connections to by-
pass some layers in the network. These shortcut connections add the output of a previous
layer to the output of a later layer, effectively allowing the network to learn residual func-
tions. By using these shortcut connections, ResNets are able to train very deep neural
networks with hundreds of layers, while still achieving state-of-the-art performance on a
variety of image recognition tasks.

ResNets have been used in many applications, such as image generation and classifica-
tion (He et al., 2016a;b; Xie et al., 2017; Chen et al., 2017b; Child, 2020), object detection
(Ren et al., 2015), and semantic segmentation (Ronneberger et al., 2015), and have set
the standard for deep neural network architectures.

HyperNetworks

Hypernetworks (Ha et al., 2016) refer to the approach of utilizing one network, called
the hypernetwork, to produce the weights for another network. This technique offers
an abstraction that mimics the natural relationship between a genotype, represented by
the hypernetwork, and a phenotype, represented by the main network. Hypernetworks
have been recently showcased their capability of generating weights for various types of
networks, ranging from simple modules like MLPs to more complex ones such as LSTMs.
These Hypernetworks have achieved remarkable results on different sequence modelling
tasks including handwriting generation, character-level language modelling, and neural
machine translation. By doing so, Hypernetworks have challenged the traditional weight-
sharing approach for recurrent networks.

In one of the mentioned articles at the beginning of this thesis, a recent coauthored
contribution (Koyuncu et al., 2023), currently under review as a conference paper, we
demonstrate that the methodology of Variational Autoencoders can be applied in conjunc-
tion with hypernetworks for generating weights of a MLP module, thus efficiently learning
to generate continuous functions p(y|x) that map any desired coordinate x to features y.

2.3.5. Training deep neural networks

A method commonly used to efficiently compute the gradients of the objective with
respect to the parameters is backpropagation. This technique, introduced by (Rumel-
hart et al., 1986; Williams and Zipser, 1989; Werbos, 1988), is also known as the backward
pass of the network. Backpropagation involves repeated application of the chain rule for
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partial derivatives. Typically, forward propagation is the term employed for describ-
ing how information flows through the network when an input x generates an output
y = f(x). This forward propagation produces a scalar cost J(θ) to be minimized with
respect to the parameters. To do so, gradients ∇θJ(θ) could be computed using an an-
alytical expression, that is relatively easy to be computed. Nevertheless, the numerical
evaluation of these quantities can result in computationally expensive optimizations.

The backpropagation algorithm (often referred to as backprop), provides a simple and
efficient procedure for flowing the information backwards through the networks, from the
cost function to the data, in order to compute the gradient. The first step is to compute
the derivatives of the cost function relative to the output units. Second, by recursively
applying the Chain Rule in each layer of the model, the expression for the gradient of
each scalar with respect to any node in the computational graph is recursively computed.
More detailed information on the backwards algorithm can be found at (Goodfellow et al.,
2016).

Instead of using the entire dataset to update the model parameters in each iteration,
neural networks make use of Stochastic Gradient Descent (SGD) for updating the
weights by taking a small random sample of the data called a minibatch. The gradients
of the loss function with respect to the weights are calculated using this minibatch, and
the weights are then updated in the direction of the negative gradient. This process is
repeated recurrently until the network reaches a point of convergence where the loss func-
tion is minimized. Using minibatches allows for faster convergence, reduces the memory
requirements for training, and allows for parallelization of the computations. SGD has
been the backbone of training deep neural networks and has proven to be highly effec-
tive. However, a vast amount of variations of SGD such as Adaptive Moment Estimation
(Adam, Kingma and Ba (2014)) or Root Mean Square Propagation (RMSProp, Hinton
et al. (2012)) have been developed to further improve training speed and accuracy.

2.4. Deep Generative models

Thanks to the exponential growth of computational capacity, and the consequent pos-
sibility of training deeper neural networks, deep generative modeling has become one
of the leading AI research directions in the last few decades. The power of neural net-
works for applying highly complex non-linear functions, added to the possibility of easily
propagating gradients of a considered objective with respect to their parameters follow-
ing the Backwards algorithm (Rumelhart et al., 1985), has made them a natural choice
for learning complex probabilistic dependencies in high dimensional spaces and solving
tasks in typical modalities considered in Machine Learning. Several strategies for learn-
ing generative models with complex dependencies modeled by neural networks have been
developed in the recent years. Mainly, as depicted in Figure 2.10, they can be divided
into two groups. Firs, explicit models are those where the density p(x) is explicitly de-
signed and can be evaluated or approximated. Within this group, we can differentiate
between models with a tractable density, and models with intractable density, i.e. where
some approximation is required due to the intractability of the marginal log-likelihood
function. Second, implicit models focus in obtaining good quality samples, and typically
require adversarial training methods that are potentially unstable.

In the upcoming sections, a brief description of each mentioned deep generative model
is included. More details on all of them can be found in resources like (Tomczak, 2022).
This thesis focuses in explicit, non-tractable density models such as Variational Autoen-
coders (VAEs), and includes an extended presentation on their fundamentals and state
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Deep Generative Models

Explicit Density

Tractable Density

Autoregressive
models

Flow-based
models

Score-based
models1

Non-tractable Density

Energy-based
models

Variational
Autoencoders
(VAEs)

Diffusion models
(DDGMs)

Implicit Density

Generative
Adversarial
Networks
(GANs)

Figure 2.10: Deep Generative Models classification.

Model Stable training Exact likelihood Fast sampling Easy reconstruction Invertible Compression

Autoregressive 3 3 7 – – 7
Flows 3 3 3 3 3 7
Score-based 3 3 7 – – 7
Energy-based 7 7 7 – – 7
VAEs 3 7 3 3 7 3
DDGMs 3 7 7 7 7 7
GANs 7 7 3 7 7 7

Table 2.1: Comparison among deep generative models with explicit density.

of the art in Chapter 3.

2.4.1. Deep Autoregressive models

In autoregressive modeling (ARM), the density p(x) is represented by recurrently
conditioning each element in x on the previous elements:

p(x) = p (x0)

D∏
i=1

p (xi | x<i) (2.36)

where x0 refers to the first element, x<i denotes all dimensions of x to the left of ele-
ment xi, and the order for indexing elements i = {1, ..., D} will depend on the nature of
the considered data, i.e. time order in sequences (where index t is typically preferred),
or pixel order in images. In the context of deep generative models, functions for condi-
tional distributions p(xi | x<i) can be modeled by training deep neural networks, being
Recurrent Neural Networks (RNNs) and their improved versions the typical choice, and
choosing an appropriate likelihood functions for the considered data. Although learning
all conditional distributions in these models would be computationally inefficient, such
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complexities are relaxed by taking advantage of causal convolutions1. Recent examples
of learning the AR dependencies using RNNs can be found in (Salinas et al., 2020; Oord
et al., 2016; Moreno-Pino et al., 2023), for sequences generation, solving tasks like time
series forecasting, audio or generalized sequence generation, and (Van Den Oord et al.,
2016; Van den Oord et al., 2016), for image generation via conditioning pixels using an
AR path. Adaptations of non-recurrent architectures can also be considered, as proposed
recently in (Salimans et al., 2017), where Convolutional Neural Networks (CNNs) are
applied sequentially over the image using masked convolutions.

Figure 2.11: Autoregressive dependencies.

Generation can be performed by, starting with a sample from the prior p(x0), recur-
rently obtaining the parameters of p(xi | x<i) using the trained NN and sampling from
the considered distribution. Another interesting property of these models is the possibility
of conditional generation.

ARMs are robust density estimators, mainly because they can learn long-range statis-
tics. Likelihood computation is tractable in ARMs by simply evaluating (2.36). Neverthe-
less, their main drawback is that, for generation, they require recurrently sampling and
parameterizing the conditionals p(xi | x<i) , ending in a slow process. Further, unlike
latent variable models, they lack a reduced latent representation, which makes them not
suitable for compression or dimensionality reduction.

2.4.2. Flow-based models

Normalizing Flows utilize the idea of the change of variables to model flexible and
high-dimensional distributions over images audio or other data sources. In essence, they
are a hierarchical model where transformations between layers are invertible. Considering
a standard prior p(z0) over a starting latent variable, the set of invertible transformations
are applied sequentially:

p(x) = p(z0 = f−1(x))

K∏
i=1

|Jfi(zi−1)|−1 , (2.37)

where Jf denotes the Jacobian matrix, and the functions fi are parameterized using in-
vertible deep neural networks that allow for relatively easy Jacobian computation. Linear,
volume-preserving transformations were firstly considered by (Dinh et al., 2014; Tomczak
and Welling, 2016). Further non-linear extensions utilized theorems on matrix determi-
nants resulting in specific transformations, namely Planar Flows (Rezende and Mohamed,
2015b) and Sylvester Flows (Berg et al., 2018; Hoogeboom et al., 2020). A different
line of work focuses on formulating invertible transformations for which the Jacobian-
determinant could be calculated easily, like coupling layers in RealNVP (Dinh et al.,
2016).

Flow-based models have become popular in recent years due to their ability to compute
exact likelihoods. However, these models are limited by the use of specific invertible
neural networks with tractable Jacobian-determinants. These transformations, such as

1Causal convolution ensures that the prediction p(xt | x<t) does not depend on data at future
timesteps x≥t. Masked convolution is equivalently considered for images.
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Figure 2.12: Unidimensional example with invertible transformations for shaping multi-
modal data densities from the unimodal latent space.

affine coupling layers and autoregressive networks, are often computationally expensive
and can restrict the expressive power of the model. Additionally, flow-based models do
not have an interpretable latent space, which can make it difficult to understand the
learned representations. Moreover, unlike other generative models, such as variational
autoencoders, flow-based models do not explicitly allow for data compression, which can
be important for applications such as image or audio compression. These limitations
make flow-based models less suitable for certain tasks and highlight the importance of
considering the strengths and weaknesses of different generative models when choosing a
model for a specific application.

2.4.3. Score-based models

Figure 2.13: Score function
(vector field) for a mixture of
two Gaussians (contours).

In score-based models, the key idea is to model
the gradient of the log-probability density function,
∇x log p(x), a quantity often known as the (Stein) score
function (Liu et al., 2016), depicted as a vector field in
Figure 2.13. They are not required to have a tractable
normalizing constant, and can be directly learned by
score matching (Hyvärinen and Dayan, 2005; Vincent,
2011). Once fitted sθ(x) ≈ ∇x log p(x), by using
Langevin dynamics (Parisi, 1981; Grenander and Miller,
1994), samples from p(x) can be obtained by initializing
the MCMC chain from an arbitrary prior distribution
x0 ∼ π(x), and then iterating like the following:

xi+1 ← xi + ε∇x log p(x) +
√

2εzi, i = 0, 1, · · · ,K
(2.38)

where zi ∼ N (0, I). When ε→ 0 and K →∞, xK converges to a sample from true p(x),
under some regularity conditions. The error is minimal when considering a sufficiently
small ε and sufficiently large K.

To avoid that only in regions with probability mass are accurately captured (like the
modes in Figure 2.13), data is perturbed with a set of noise levels σ1 < ... < σL, and
using as objective the following sum of Fisher divergences:

L∑
i=1

λ(i)Epσi (x)
[
‖∇x log pσi(x)− sθ(x, i)‖22

]
. (2.39)

where λ(i) is a positive weighting function, typically chosen to be λ(i) = σ2
i . This method

is known as Annealed Langevin Dynamics (Figure 2.14). Further, by extending Score-
based models with stochastic differential equations (Song et al., 2020), the number of

32



noise scales can be generalized to infinity, which allows for higher quality samples, exact
log-likelihood computation, and controllable generation for inverse problem solving.

Figure 2.14: Sampling images with multiple Gaussian noise levels using Annealed
Langevin Dynamics.

Score-based models have achieved state-of-the-art performance on many downstream
tasks and applications. To list some of them: image generation (Song and Ermon, 2019;
2020; Ho et al., 2020; Song et al., 2020; Dhariwal and Nichol, 2021), audio synthesis (Chen
et al., 2020; Kong et al., 2020; Popov et al., 2021), shape generation (Cai et al., 2020),
and music generation (Mittal et al., 2021). Additionally, inverse problem solving allows
for conditional generation, with interesting applications such as image inpainting (Song
and Ermon, 2019; Song et al., 2020), image colorization (Song et al., 2020) or medical
image reconstruction (Jalal et al., 2021), among others.

The two main drawbacks of using score-based generative models are, first, the slow
sampling speed due to the Langevin MCMC sampler, and second, scores are only defined
for continuous distributions, thus preventing to use score-based models for generating
discrete data.

2.4.4. Energy-based models

Energy-based models (EBMs) (LeCun et al., 2006) are based Boltzmann machines,
that were firstly proposed by (Ackley et al., 1985; Smolensky, 1986), with ideas taken from
statistical physics and formulated by cognitive scientists. In contrast with likelihood-based
models, instead of proposing a specific distribution, an energy function E(x) is considered
for assigning an energy value to a given input state. This energy function is the exponent
of the density, in the form:

p(x) =
1

Z e
−E(x), (2.40)

where Z =
∫
x
e−E(x)dx is the normalization constant, also known as partition function,

that normalizes the distribution. The main advantage of learning the Energy function is
that, differently from density functions, there are no restrictions on the normalization, so
it can be parameterized it with neural networks.

Energy-Based Models (EBMs) offer a versatile and attractive means of representing
uncertainty. Nonetheless, despite recent progress, training EBMs on high-dimensional
data remains a difficult problem (Song and Kingma, 2021; Duvenaud et al., 2021) as the
current leading approaches are expensive, fragile, and demand substantial expertise in
the domain and extensive parameter tuning to achieve successful outcomes.

2.4.5. Variational Autoencoders

Variational Autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al.,
2014) are likelihood-based deep generative models that compress and decompress data
following an autoencoder framework. Their operation is illustrated with a diagram in
Figure 2.15. VAEs are latent variable models that extend Probabilistic PCA (Section
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Figure 2.15: Variational Autoencoder.

2.2.1) by using complex non-linear functions parameterized by deep neural networks. It
is this complexity added by the networks that makes the inference of the true posterior
over latent variables p(z|x) intractable. Thus, they require to introduce an approximation
by training an auxiliary model to perform amortized variational inference (Cremer et al.,
2018; Zhang et al., 2018) with an encoder-decoder architecture. The encoder network,
with parameters φ, maps observations x ∈ RD to the parameters of the approximate
posterior qφ(x|z), typically Gaussian, and with lower dimensionality z ∈ Rd. The decoder
network, with parameters θ, maps the latent variable sampled from this approximate
posterior to the parameters of the data likelihood pθ(x|z). Under this approximation,
the objective function is the Evidence Lower Bound (ELBO) on the true marginal log
likelihood, given by

L(x) = Eqφ [log pθ(x|z)]−DKL(qφ(z|x)||p(z)), (2.41)

where the first term, named reconstruction, maximizes the likelihood of the data for given
samples of the approximate posterior, and the second term, encourages that the mismatch
between approximate posterior and prior is as small as possible.

The flexibility of VAEs makes them a powerful class of models. Differently from flow-
based models, they do not require the invertibility of neural networks, thus, we can use any
arbitrary architecture for encoders and decoders, with the cost of lower bounds of the log
marginal likelihood being required. In contrast to ARMs, they learn a low-dimensional
data representation and we can control the bottleneck (i.e., the dimensionality of the
latent space), which adds extra interpretability of the way the latent space is structured
in order to represent hidden factors of the data being encoded. Nonetheless, they also
suffer from several issues. Apart from the one mentioned before (a gap between the
ELBO and the true log-likelihood), other problems to be considered are: the necessity of
an efficient integral estimation for computing the first term of 2.41, the posterior collapse,
the hole problem, the mode collapse or the control of the gap by carefully designing of the
variational posterior and the prior. VAEs are more extensively discussed in Chapter 3 of
this thesis.

Hierarchical VAEs

Among the recent variations of VAEs, of special interest in this thesis are Hierarchical
VAEs, which are extensively reviewed in Section 3.7, and are one of the leading topic
directions in research for improving VAE frameworks. In this type of VAEs, a set of
autoregressive variables, organized hierarchically, conform a more structured latent space,
thus providing a much more flexible prior. Their increased flexibility makes them a
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powerful and robust choice when high dimensional, diverse multimodal datasets are to be
modeled.

2.4.6. Difussion Models

Diffusion-based Deep Generative Models (DDGMs) learn to generate data by
recurrently denoising samples of a latent hierarchy. They can also be understood as a
variation of hierarchical VAEs where the bottom-up path that defines the variational pos-
teriors is defined by a diffusion process q(zi|zi−1), and the top-down path pθ (zi|zi+1) is
parameterized by deep neural networks that reverse the diffusion. Differently from Hier-
archical VAEs, the bottom-up path does not need to contain any learnable parameters.
Consequently, DDGMs avoid the posterior collapse problem in deeper layers. The joint
distribution is modeled as a first-order Markov chain with Gaussian transitions, namely:

pθ (x, z1:T ) = pθ (x | z1)

(
T−1∏
i=1

pθ (zi | zi+1)

)
pθ (zT ) , (2.42)

where pθ(z0) = N (0, I), and differently from VAEs, the latent variable has the same
dimension than the data, i. e. x, z ∈ RD. The posterior distributions (intractable) is
approximated by the diffusion process:

qφ (z1:T |x) = qφ (z1|x)

(
T∏
i=2

qφ (zi|zi−1)

)
(2.43)

where qφ (zi|zi−1) = N
(
zi|
√

1− βizi−1, βiI
)
, and z0 = x. In broader terms, each layer

scales the sample from previous layer by
√

1− βi and adds a new noise term with variance
βi. This diffusion-based inference is comparable to the data perturbation in score-based
models, depicted in Figure 2.14. The variances β1:T can be learned, fixed or linearly
increased over a considered interval, as proposed in (Ho et al., 2020).

DDGMs are a specific variant of Hierarchical VAEs, and whether it is indeed more
beneficial to use fixed variational posteriors by sacrificing the possibility of having a bot-
tleneck is an open question. Flow-based models are also connected with DDGMs, in the
sense that both classes of models map noise to data through a sequence of layers. In
Flow-based models, the exact likelihood can be computed, but calculating the expensive
Jacobian determinant is the price to pay. DDGMs are also closely related to stochastic
differential equations, and thus, their theoretical properties seem to be especially inter-
esting (Huang et al., 2021; Song et al., 2021; Tzen and Raginsky, 2019). They have
also obtained astonishing results for image (Ho et al., 2020; Kingma et al., 2021; Saharia
et al., 2022), audio (Kong and Ping, 2021), and text (Austin et al., 2021; Hoogeboom
et al., 2021) synthesis while being relatively simple to implement. Nevertheless, whilst
DDGMs have recently become one of the leading directions in DGMs research, their main
drawbacks are, mainly, the lack of compression, and the slow sampling process.

2.4.7. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a powerful class of implicit gen-
erative models, introduced by (Goodfellow et al., 2020). As depicted in Figure 2.16, they
consist of two neural networks: a generator and a discriminator, that are trained in an
adversarial manner. The generator network, Gθ(z), learns to transform samples from a
latent variable into synthetic data that ideally is indistinguishable from the real data,
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while the discriminator network Dφ(·) is trained to distinguish between the synthetic
data produced by the generator and the real data. The idea of the adversarial problem
could be traced back to (Schmidhuber, 1990), and leads to a Nash equilibrium, where
the generator produces synthetic data that is indistinguishable from the real data by the
discriminator. In other terms, the goal is that i) the discriminator is good at detecting
fake samples that come from the generator, i.e. Dφ(Gθ(z)) = 0, and Dφ(x) = 1, and ii)
the generator is good at cheating the discriminator, i.e. Dφ(Gθ(z)) = 1. This leads to
the following adversarial loss:

min
θ

max
φ

Ex∼pdata
[logDφ(x)] + Ez∼p(z) [log (1−Dφ (Gθ(z)))] . (2.44)

GANs have been successfully applied to various applications, obtaining outstanding re-
sults in image synthesis (Radford et al., 2015; Karras et al., 2019; Brock et al., 2018), style
transfer (Gatys et al., 2015; Johnson et al., 2016a), and representation learning (Donahue
et al., 2017; Miyato and Koyama, 2018). The generator network can be any type of neu-
ral network architecture, making GANs highly flexible and suitable for a wide range of
tasks. Additionally, GANs can generate high-quality samples and have been shown to
capture the underlying structure of the data distribution in many cases. However, GAN
training can be challenging due to instability and mode collapse, and careful design of
the architecture and training procedure is often required to achieve good results. Fur-
thermore, due to their implicit design, in their näıve configuration, they do not allow for
any inference-related task. Recent approaches as the Bidirectional GAN (Donahue et al.,
2017) made it possible to learn the inverse mapping from data to latent representation.

Figure 2.16: Generative Adversarial Network.

2.4.8. Inductive Bias in Latent Variable Models

Deep LVMs aim to uncover the underlying factors in the data they observe (Bengio
et al., 2013). To achieve this, as discussed in this chapter, they learn a joint distribution
of the observed data, x, and hidden factors, z, which is represented as p(x, z). The key
to obtaining a meaningful representation is to determine the posterior distribution of the
hidden factors, p(z|x). However, determining what constitutes a“useful” representation
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is not a straightforward task. A useful representation may refer to a latent representa-
tion that is easily interpretable or captures meaningful information about the generative
process. For example, in a DGM trained to generate images of bedrooms, a dimension of
z could encode the color of the bedroom.

As pointed out by (Tomczak, 2021), maximizing the likelihood function to learn a
latent variable model might not result in useful representations. The training problem of
learning parameters θ can also be reconsidered as an unconstrained optimization problem
with the following objective:

DKL (pdata (x)‖pθ(x)) = −H [pdata (x)] + CE [pdata (x)‖pθ(x)] , (2.45)

where the entropy of the empirical distribution (first term) does not depend on the pa-
rameters, and thus, is constant. The cross-entropy (second term) can be derived as

CE [pdata (x)‖pθ(x)] = −
∫
x

pdata (x) log pθ(x)dx = − 1

N

N∑
n=1

log pθ (xn) , (2.46)

which corresponds to the negative log-likelihood function, and as observed, it is inde-
pendent of the hidden factors z, due to their marginalizion for obtaining pθ(xn) =∫
z
pθ(xn, z)dz. The intuition behind this conclusion is that in DGMs, the marginal over

observable variables are optimized, due to not having access we to actual values of latent
variables. As a consequence, controlling the way DGMs capture the hidden information
is typically arduous, since Maximum Likelihood optimization only encourages accurate
data reconstructions. Furthermore, some models lead to possible interpretations on how
they organize the latent space. Within potential pitfalls, a latent variable model can learn
to disregard the latent variables completely.

With illustrative purposes, in Figure 2.17a, a fictitious search space of all possible
LVMs and their evaluation in terms of goodness of fit (2.45) in the horizontal axis, and
“usefulness” in the vertical axis, is depicted. An ideal model would be considered as the
one that lied in the top-left corner, since it would optimize both criteria. Nevertheless,
as discussed above, the maximum likelihood objective in (2.46) is not sufficient for ac-
complishing the two objectives. It is possible to find a model that completely disregards
the latent variable while maximizing the fit to data (bottom-left corner). In fact, infi-
nite models would be equally good with respect to (2.46) but with completely different
posteriors over latent variables.

In contrast, in practice, we observe that properly learned latent variables are useful.
To illustratively represent this paradox, an example is included in Figure 2.17b, where a
type of LVM is considered by choosing a neural architecture for parameterizing a proba-
bilistic model. For instance, using some a bottleneck design for compressing data into a
latent space, like in VAEs, might lead to a situation where latent variables contain useful
information about observed data. This design restricts the search space to 2.17b, where
two spikes represent those hypothetical models that optimally minimize the KL whilst
achieving meaningful representations.

Again, theoretically, the power of DNNs can be put to rebut this hypothesis. In Figure
2.17c this problematic is depicted. Choosing a specific architecture modifies the search
space in comparison with 2.17a. Nevertheless, in contrast with 2.17b, if the conditional
likelihood p(x|z) is parameterized by an infinitely flexible (enormous DNN), the model
could learn to mimic the data distribution pdata(x) almost perfectly, thus completely
disregarding the latent space. In these hypothetical large models, there would be a trade-
off between i) accurately replicating the training distribution (bottom-left corner) with

37



(a) All LVMs (b) A class of LVM (c) LVMs with flexible p(x|z)

Figure 2.17: Illustrative diagram of the “usefulness” (vertical axis) of latent representa-
tions deep generative models trained for mimicking the true data distribution (horizontal
axis and color intensity). In (a), no restrictions are consider such that infinitely good
models can perfectly mimic the true data distribution. In (b), deep neural networks re-
strict the search space to possibly find optimal configurations. In (c), extremely flexible
DNNs are considered such that a model can disregard latent variables.

meaningless latent variables, versus ii) reducing this accuracy but achieving useful latent
representations (top-right corner), represented by the linear tendency in Figure 2.17c.
Unfortunately, it remains unclear how to find points where meaningful representations
and accurate data fitting are simultaneously achieved.

The picture presented in the previous paragraph can be pessimistically interpreted,
in the sense that choosing a proper class of models that allow achieving useful latent
representations, is a highly non-trivial task. Nevertheless, within the context of VAEs,
which comprises a pillar of the present thesis, this problem can be handled by mainly three
alternatives, as it will be extensively covered in Chapter 3. First, some previous work
formulated a constrained optimization problem (Phuong et al.; Rezende and Viola, 2018),
modifications of the loss function (Higgins et al., 2016; Burgess et al., 2018) or added an
auxiliary regularizer (Sinha and Dieng, 2021; Tomczak, 2016) to implicitly define and
increase usefulness of the latent space. Second, semi-supervision can be incorporated to
encourage for meaningful representations (Bouchacourt et al., 2018). Third, by carefully
designing the latent space usefulness can be implicitly enforced.

This thesis is focused on the third approach. The knowledge that is incorporated into
model components through their design is typically referred to as the inductive bias.
As it will be discussed in several sections, designing the structure of the latent space lead
to not only useful, but also highly interpretable latent spaces. For instance, as it will be
discussed in Chapters 3 and 5, a hierarchical latent space design encourages deeper latent
variables to capture more abstract or general information, while the shallowest layers
encode specific information. Similarly, by creating a global space, shared by multiple
observations, global factors can be represented (see Chapter 4).
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CHAPTER 3

Variational Autoencoders

In Section 2.2.1, the unsupervised PCA method was introduced as a means of linearly
projecting observed data into a reduced space. This is accomplished via an optimal linear
transformation that reduces the explained variance of the transformed data into fewer
dimensions than the original space. Probabilistic PCA, the probabilistic version, was also
discussed as a generative, latent variable model that transforms a latent space of reduced
dimensionality into the observed space using linear transformations. The linearity enables
analytical expressions for all the relevant probability distributions, including the marginal
likelihood, p(x), and the posterior of the latent variable, p(z|x), given p(x|z). The former
is necessary for optimizing the parameters of the linear transformation using maximum
likelihood, while the latter ideally captures useful information about the generative factors
of the data.

Chapter 2 presented Deep Learning as a field that allows for the efficient learning of
complex non-linear functions of high-dimensional data, such as tabular data, images, or
sequences, thanks to the power of Deep Neural Networks. In Section 2.4, the various types
of Deep Generative Models were introduced, along with their principal characteristics, ad-
vantages, applications, and limitations. Among these variants, Variational Autoencoders
(Kingma and Welling, 2013; Rezende et al., 2014) share similar concepts with Probabilis-
tic PCA. They employ a reduced latent space and aim to learn the functions that map
observed data to the latent space, as well as generate new data from it. The primary
distinction is that VAEs are not restricted to using linear functions, but instead use Neu-
ral Networks, including all the architectures discussed in Section 2.3, to parameterize the
distributions. Compared to a single linear transformation, Neural Networks have a vast
potential since the data typically encountered in the real world is far from being linearly
generated.

The automatic discovery of non-linearities through NNs is a highly valuable technique
and has been extensively studied in recent years. Variational Autoencoders have achieved
outstanding results in numerous applications. To list some of the most important ones,
the following recent works are referred for image generation (Razavi et al., 2019b; Vah-
dat and Kautz, 2020; Child, 2020), video generation (Yan et al., 2021; He et al., 2018;
Bhagwatkar et al., 2021), text generation (Bowman et al., 2015), neural machine trans-
lation (Sutskever et al., 2014), music generation (Roberts et al., 2018), outlier detection
(Chauhan et al., 2022; Denouden et al., 2018; Xiao et al., 2020; Serrà et al., 2019) time-
series analysis (Tang and Matteson, 2021a; Chung et al., 2015; Fraccaro et al., 2016),
recommendation systems (Shenbin et al., 2020; Liang et al., 2018). However, the usage
of NNs also comes with issues that must be addressed, as will be discussed further in this
chapter.

This doctoral thesis presents several research contributions, detailed in Chapters 4 and
5, that utilize VAEs as a generative model. Therefore, the upcoming sections provide a
comprehensive discussion of VAEs. Section 3.1 begins with the definition of a Determin-
istic Autoencoder as a starting point. Next, Section 3.2 discusses the base definition of
a Variational Autoencoder. Brief comments on typical challenges of VAEs are provided
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Figure 3.1: Diagram of a Deterministic Autoencoder. An encoder maps original data x
to latent codes z, such that a decoder learns to reconstruct them to x̂.

in Section 3.3. Finally, Sections 3.4 to 3.8 review all the challenges addressed in the
contributions of this thesis.

3.1. The Autoencoding Framework

In this first section, the Deterministic Autoencoder, also known as Denoising
Autoencoder, Deep Autoencoder or simply Autoencoder is presented as an intro-
duction to VAEs. As a non-probabilistic model, it is not necessarily required to include
any probability distribution to be parameterized. The focus is on the idea that it can be
compared to PCA, since both are non-probabilistic methods that are typically employed
for dimensionality reduction or feature learning. The main difference is that NNs are used
by Autoencoders to approximate the functions learned for compressing the data into the
hidden space and reconstructing data from the hidden representation.

In the Autoencoder context (depicted in Figure 3.1), the operation of mapping the
observed data to the hidden space is known as encode, and the corresponding function is
learned by the encoder neural network. Similarly, the decoder neural network is used
for modeling the function that decodes hidden codes into data in the observed space.
The parameters of the encoder Eφ and decoder Dθ can be denoted by θ, φ, and the
reconstruction of a datapoint can be expressed as:

x̂ = Dθ(Eφ(x)), (3.1)

which is also depicted in Figure 3.1. To learn the parameters θ and φ, the error on all
the reconstructions is minimized, and it can be defined as:

L(x; θ, φ) =
1

N

N∑
n=1

Ln(x, ;Dθ(Eφ(x))). (3.2)

Using the backprop algorithm for computing the gradients, and SGD for iteratively ap-
proaching the minimum, a Deep Autoencoder can be easily trained. Nevertheless, due to
its non-probabilistic nature, diversity in data generation is complicated to achieve. As it
will be discussed, using a probability perspective over the autoencoding idea provides an
extra degree of flexibility to the model, as well as the capability of quantifying uncertainty.
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Figure 3.2: Detailed diagram of a Variational Autoencoder. A latent space with standard
Gaussian prior probability (blue contour) generates realistic data by decoding z sam-
ples. The parameters of the approximate posterior per observation (colored contours) are
outputs of the encoder.

3.2. Auto-encoding Variational Bayes

As previously noted, the Variational Autoencoder (VAE), illustrated in Figure 3.2,
is considered a non-linear extension of Probabilistic PCA, which approximates complex
non-linear functions using neural networks. The marginal likelihood that is optimized for
parameter learning via maximum likelihood remains the same:

p(x) =

∫
z

p(x|z)p(z)dz, (3.3)

however, the parameterization of p(x|z) in VAEs is so complex that the integral becomes
intractable. A simple Monte Carlo approach can be used, as shown in (2.15), where
the integral is approximated using samples from the prior zs ∼ p(z). However, this
approach is computationally expensive and exploring the latent space becomes even more
challenging as the dimensionality of z ∈ Rd increases.

It should be noted that more flexible priors with learnable parameters pθz (z) can be
designed for generating data with advantages, but obtaining samples from them is not
straightforward. Advanced Monte Carlo techniques such as Hamiltonian Monte Carlo can
be used, but they also suffer from the curse of dimensionality. In Chapter 5, one of the
main contributions of this thesis, which is the efficient use of Hamiltonian Monte Carlo
to enhance the inference of VAEs, is discussed.

To tackle this problem, Variational Inference is employed in VAEs, as discussed in the
subsequent sections. Variational Inference achieves an efficient approximation of the log
evidence log p(x).

3.2.1. Variational Inference

Variational Inference, firstly introduced by Jordan et al. (1999), is an approximate
inference technique that utilizes a family of distributions qφ(z), parameterized by φ, to
approximate the intractable posterior distribution p(z|x) of the latent variables. The
requirement for this family of distributions is that they assign non-zero probability to any
z in its domain. A typical choice for qφ(z) is the Gaussian distribution with parameters
φ = µz,σ

2
z , resulting in qφ(z) = N (z;µz,σ

2
zI). This is motivated by the fact that
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the Gaussian distribution is a widely used distribution that is simple and flexible. The
choice of this distribution also leads to tractable computation of the required parameters
of qφ(z), and low variance estimators using the reparameterization trick (Kingma and
Welling, 2013).

Having defined this approximate posterior, typically the KL divergence of q from
p is the choice of dissimilarity function to be minimised,

DKL(qφ(z)‖p(z|x)) =

∫
z

qφ(z) log
qφ(z)

p(z|x)
dz (3.4)

which provides a way to approximate the intractable true posterior by means of the chosen
family, being this approximation more or less accurate depending on several aspects, like
the choice of the variational family or the complexity of the true posterior.

3.2.2. The Evidence Lower Bound

In order to learn the parameters of a model, an approximation of the log evidence,
log p(x) is required via Variational Inference. As discussed earlier, this evidence is related
to the posterior by Bayes theorem (Equation (2.12)). By substituting this identity into
(3.4), we obtain the following expression

DKL(qφ(z)|p(z|x)) =

∫
z

qφ(z)[log qφ(z)− log p(x, z)]dz + log p(x), (3.5)

where the third step uses the fact that p(x) is constant with respect to z, so
∫
z
qφ(z) log p(x) =

log p(x). By moving log p(x) to the left-hand side and expressing in terms of expectations,
we obtain the following expression

log p(x) = DKL(qφ(z)||p(z|x)) + Eqφ(z)[log p(x, z)− log qφ(z)]. (3.6)

The first term is intractable due to the true posterior being intractable. However, since
the KL divergence is strictly positive by definition, it follows that

log p(x) ≥ L(x) = Eqφ(z)[log p(x, z)− log qφ(z)], (3.7)

where L(x) refers to the Evidence Lower Bound (ELBO), depicted in Figure 3.3.
VAEs use the ELBO as a training objective that approximates the intractable log-evidence.
It can also be expressed in terms of a new KL

L(x; θ, φ) = Eqφ(z)[log pθ(x|z)]−DKL(qφ(z)||p(z)), (3.8)

which penalizes the dissimilarity between the approximate posterior and the prior of the
latent variable. The first term in (3.8) is typically approximated via simple Monte Carlo,
resulting in the following expression

L̂(x; θ, φ) =
1

S

S∑
s=1

log pθ(x|zs)−DKL(qφ(z)||p(z)). (3.9)

More advanced Monte Carlo techniques are discussed in Section 3.5 for approximating
the ELBO and reducing the gap between it and the intractable log-evidence.
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Figure 3.3: The bias of the Evidence Lower Bound. Suboptimal θ̂ maximizes the ELBO
objective (red), but is biased respect to the true optimal parameters θ∗ that maximize
the intractable log-evidence (blue).

3.2.3. Amortized Variational Inference

In classical variational inference, the parameters φn for each observation xn would
require to be optimized using (3.8). Nevertheless, the expressiveness of NNs can be
considered in order to perform amortized variational inference, by learning a map-
ping from observations to the corresponding variational parameters, via qφ(z|x). Within
this setup, φ denotes the parameters of the considered NN, which is also referred to as
encoder, in the VAE terminology. Similarly, θ defines the NN for parameterizing the
likelihood given a latent sample, via pθ(x|z). The resulting ELBO is

L(x; θ, φ) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z)). (3.10)

As a result, an autoencoding framework is obtained, with the difference that both the
encoder and decoder are stochastic, as illustrated in Figures 3.1. The first term of the
ELBO is referred to as the reconstruction term, that encourages a good reconstruction
of the data by maximizing the likelihood given samples from the approximate posterior.
Typically one sample is sufficient for obtaining reasonably accurate approximations. The
second term can be understood as a regularizer, since, as said before, it encourages the
posteriors (colored contours in Figure 3.2) to not lie far from the prior. For more complex
models, i.e. when the prior is also parameterized and learnable, as it will be discussed
later in Chapter 5, this KL may not be interpreted as a regularizer.

The goodness of the amortized variational inference is mainly characterized by two
factors: a) the capacity of the variational distribution to represent an approximation of
the intractable true posterior and b) the flexibility of the encoder to properly parameterize
the variational distribution of each observation (Cremer et al., 2018).

3.2.4. The reparameterization trick

The näıve gradient estimator of the ELBO in (3.10) would suffer from high variance.
Typically, the variational posteriors place the probability mass in much smaller regions
than the prior does, i.e. they are peaky distributions. To compute the gradients over φ,
the backprop algorithm would firstly compute gradients over z, and due to the stochas-
ticity of z and the peaky posterior distribution, gradients with high variance would be
backpropagated. Mathematically, a simple MC estimator of the gradients would be de-
rived as

∇φEqφ(z)[f(z)] = Eqφ(z)
[
f(z)∇qφ(z) log qφ(z)

]
' 1

L

L∑
l=1

f(z)∇qφ(z(l)) log qφ

(
z(l)
)
,

(3.11)
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where the gradient ∇qφ(z(l)) would be the one referred to suffer from high variance.

To solve that, Kingma and Welling (2013) proposed an efficient solution referred to
as the reparameterization trick, consisting on firstly sampling an auxiliary variable
ε ∼ N (0, I), and secondly obtaining z ∼ qφ(z|x) by reparameterizing

z = µz + σz · ε. (3.12)

Thanks to this trick, the randomness comes from an independent source of the parameters
to be optimized, and thus, the variance of the gradients is drastically reduced. A related
technique will be employed in the second contribution of this thesis, discussed in Chapter
5, for relaxing the posterior distribution of a hierarchical latent space and efficiently
incorporating a HMC sampler.

3.3. Challenges in VAEs

As discussed above, VAEs are a highly flexible and powerful type of model that al-
lows for arbitrary encoder and decoder architectures without requiring neural networks
to be invertible. Unlike ARMs, Flows or Diffusion-based models, VAEs can learn low-
dimensional data representations and we can control the dimensionality of the latent
space. However, they are not without their issues. In addition to the previously men-
tioned challenges, such as requiring efficient integral estimation and a gap between the
ELBO and the log-likelihood function for overly simplistic variational posteriors, there
are several other potential problems to consider.

Posterior collapse

One issue is related to the regularization term and the ELBO. In case the decoder is
too powerful and treats z as noise, the regularization term will be minimized such that
the posterior and prior are too close, leading to uninformative posterior, or the posterior
collapse problem (Alemi et al., 2018). Within this problematic, the decoder acts as an
ARM, combining dimensions of z to reconstruct data.

Numerous concepts have been put forth to address the issue of posterior collapse.
One such concept, as outlined in (He et al., 2019), involves updating variational poste-
riors more frequently than the decoder. In (Dieng et al., 2019), an alternative decoder
architecture was suggested, featuring skip connections that promote a more seamless flow
of information (and gradients) within the decoder.

As it will be discussed later, Hierarchical VAEs are prone to suffer from the posterior
collapse problem, in case deep layers in the latent hierarchy are ignored and act as noise.
Some recent works addressed this problem by adding top-down inference paths (Maaløe
et al., 2019; Vahdat and Kautz, 2020; Sønderby et al., 2016; Child, 2020).

The holes problem

This occurs when the aggregated posterior does not match the prior, resulting in
regions where the prior assigns high probability but the aggregated posterior qφ(z) =
1
N qφ(z|xn) assigns low probability, or vice-versa. Consequently, sampling from these
regions, named holes, produces unexplored latent values and unrealistic or poor quality
images from the decoder. This phenomena is referred to as the hole problem (Rezende
and Viola, 2018), and is depicted in Figure 3.4. Typically this problem is handled by
increasing the flexibility of the prior by employing learnable distributions, as it will be
discussed in Section 3.4.
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Figure 3.4: Illustration of the hole problem. Blue contours are the prior p(z), whilst
orange contours are approximate posteriors qφ(z|xn,yn). Left: simple standard prior
does not accurately cover the encoder complexity. Decoding samples from the prior that
fall far from the aggregated posterior from training data gives unrealistic images. Right:
a more flexible prior properly matches the complexity of the encoder, leading to better
quality of the images generated from the prior. Figure from (Koyuncu et al., 2023).

Outlier Detection

Variational Autoencoders (VAEs) are not typically well-suited for outlier detection
because they are designed to model the underlying distribution of the training data, rather
than explicitly identifying outliers (Chauhan et al., 2022). By evaluating the likelihood,
VAEs can be employed for anomaly detection. However, their training assumes that
the occurrence of the data is representative of the underlying distribution, and any data
that falls outside of that distribution is likely to be poorly reconstructed by the decoder
(Denouden et al., 2018). While VAEs can identify points that are dissimilar to the training
data, they are not optimized specifically for this task. In other terms, VAEs can calculate
likelihoods which may be useful for identifying outliers when dealing with unlabeled data.
However, prior research (Chauhan et al., 2022; Denouden et al., 2018; Xiao et al., 2020;
Serrà et al., 2019) has revealed that these likelihoods are not dependable and can be
easily skewed by simple modifications to the input data. Furthermore, as said before,
VAEs can suffer from the hole problem, where there are regions of the latent space that
are not well-represented by the training data. This can make it difficult to distinguish
between outliers and regions of the latent space that the model has not encountered during
training.

In summary, despite VAEs can be used for outlier detection, they may not be the
best choice of model for this task and may require additional modifications or use in
combination with other models to effectively identify outliers.

MC inference

Advanced MC methods have been recently proposed for enhancing the approximate
inference in VAEs, mainly by improving the approximation of the log-evidence (Burda
et al., 2015; Salimans et al., 2015), its gradients (Ruiz et al., 2021; Caterini et al., 2018), or
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with similar benefits, the quality of the samples from the approximate posterior (Campbell
et al., 2021).

This direction is directly related with one of the contributions of this thesis (Peis et al.,
2022), presented in Chapter 5. Therefore, it is more extensively discussed in a separate
Section 3.5 below and in the mentioned chapter.

Representation Learning

In the context of deep generative models, Representation Learning is the Machine
Learning area that studies the usefulness of learning latent representations. By designing
the structure of the latent space, meaningful representations can be obtained with the
help of inductive bias. This definition is specified to the relationships between input data
and latent factors that represent generative factors of variation (Mathieu et al., 2019b;
Locatello et al., 2019b) within unsupervised or semi-supervised settings (Bouchacourt
et al., 2018).

As stated before, this direction is directly related with one of the contributions of
this thesis (Peis et al., 2023), presented in Chapter 4. Therefore, it is more extensively
discussed in a separate Section 3.8 below and in the mentioned chapter.

Variational design

An important research direction in VAEs is based on enhancing the flexibility of
the encoder, in order to obtain better approximations of the true posterior. The most
widely employed variational approximation, i.e. a factorize (diagonal covariance) Gaus-
sian, might be insufficient for modeling the posterior high-dimensional latent spaces of
complex data.

Of special importance among the alternatives to parameterize the approximate pos-
terior is the employment of Normalizing Flows. As stated before in Section 2.4.2, the
main advantage of Flows is that they are invertible, thus they allow for exact inference.
The way they operate is by starting from a simpler, factorized Gaussian distribution, to
be transformed into more complex distributions by means of invertible transformation.
Using the determinant of the Jacobian of (2.37), and considering a group of L Flow layers,
the ELBO under this setup can be expressed as

log p(x) ≥ Eq(z(0)|x)

[
log p(x|z(L)) +

L∑
l=1

log
∣∣∣ ∂f(l)

∂z(l−1)

∣∣∣]−DKL(q(z(0)|x)||p(z(L))) (3.13)

Different types of Flow-based transformation have been considered, being the most im-
portant ones the Inverse Autoregressive Flow (Kingma et al., 2016), Householder flows
(Tomczak and Welling, 2016), Sylverster flows (Berg et al., 2018) or generalized Sylvester
flows (Hoogeboom et al., 2020).

Using bigger architectures

As stated before, once the variational distribution qφ(z|x) is chosen, any architec-
ture can be utilised for parametering it, and similarly for the data likelihood distribution
pθ(x|z). ARMs (Van Den Oord et al., 2016; Van den Oord et al., 2016; Salimans et al.,
2017), ResNets Vahdat and Kautz (2020); Child (2020) or Transformers (Tang and Mat-
teson, 2021b) are powerful examples that have been recently considered. The balance
needed between encoder and decoder architectures is studied in (Cremer et al., 2018).
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Prior design

By designing more flexible priors, deep generative models achieve a higher expressivity
and can learn to generate more complex data. Several degrees of flexibility have been
considered, starting from mixtures of Gaussians (Dilokthanakul et al., 2016; Tomczak
and Welling, 2018), to more complex models like Flow-based (Koyuncu et al., 2023; Chen
et al., 2017b; Gatopoulos and Tomczak, 2021), Diffusion-based (Zeng et al., 2022), or
Hierarchical VAEs (Vahdat and Kautz, 2020; Child, 2020; Maaløe et al., 2019).

This latter direction is directly related with one of the contributions of this thesis,
presented in Chapter 5. Therefore, it is more extensively discussed in a separate Section
3.4 below and in the mentioned chapter.

Geometry of the latent space

The Euclidean space is the typical choice for the latent space. Nonetheless, the VAE
framework enables exploration of alternative spaces. As examples, a hyperspherical latent
space was employed in (Davidson et al., 2018; 2019), and a hyperbolic latent space was
utilized in (Mathieu et al., 2019a).

Discrete latent spaces

Although only continuous latent variables have been considered up to this point in
the text for VAEs, recently, potential studies have incorporated discrete latent variables
for generating data. From simpler Categorical variable that models components of mix-
ture models (Dilokthanakul et al., 2016; Peis et al., 2023), to more flexible varieties
of VAEs that utilizes vector quantization for obtaining a discrete latent representation,
like the VQ-VAE (Van Den Oord et al., 2017). The introduction of vector quantiza-
tion techniques enables to avoid the issue of posterior collapse mentioned in Section 3.3.
By combining these representations with an autoregressive prior, the model can gener-
ate high-quality images, videos, speech, and perform top-notch speaker conversion and
unsupervised phoneme learning.

One of the contributions of this thesis is an example of using discrete latent variables
in VAEs (Peis et al., 2023). Concretely, the considered discrete latent variable models the
components of a Gaussian Mixture, that allows for achieving disentanglement of global
and local latent spaces, as it will be discussed later in Chapter 4.

3.4. Prior design

The ELBO encourages to properly reconstruct data via the first term, while minimiz-
ing mismatch between posterior and prior via the second term. In the base definition, the
prior p(z) is modeled by a standard Gaussian. Nevertheless, when complex data spaces
are to be encoded in the latent space, more flexible priors are required in order to avoid
a big mismatch between the aggregated posterior and the prior. In previous works, this
issue has been alleviated by several strategies, among others: using a Gaussian Mixture
prior (Dilokthanakul et al., 2016), using multimodal priors mimicking the aggregated
posterior (VampPrior, Tomczak and Welling (2018)), or training flow-based (Rezende
and Mohamed, 2015a; Kingma et al., 2016; Papamakarios et al., 2021; Gatopoulos and
Tomczak, 2021), autoregressive (Chen et al., 2017a), hierarchical (Klushyn et al., 2019;
Maaløe et al., 2019; Peis et al., 2022), or diffusion-based (Zeng et al., 2022) priors.
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3.4.1. Standard Gaussian prior

In VAEs, the standard Gaussian distribution p(z) = N (0, I) is the vanilla option
for the prior over the latent variables. The main reason is because it is uncomplicated
and requires no additional parameters. Nonetheless, as discussed previously, using the
standard Gaussian distribution can result in poor hidden representations with holes due
to the mismatch between the aggregated posterior and the prior (see Section 3.3). This
problematic worsens with higher dimensional data. Thus, more flexible priors are re-
quired, typically those with learnable parameters. In the following subsections, recent
approaches are briefly discussed.

3.4.2. Mixture of Gaussians prior

The Gaussian Mixture Model as prior of a VAE was firstly proposed by (Dilokthanakul
et al., 2016) as the GMVAE. Thanks to this approach, the latent space flexibility can be
easily enhanced. For example, when training a GMVAE with MNIST, the approximate
posterior of z is automatically clusterized to separate codes of different digist in different
clusters or regions in the latent space. This is achieved by defining a latent variable d with
Categorical prior p(d) = Cat(πd), where in its simplest approach, πd is defined to make
the mixture uniform, and the posterior is approximated by a new variational proposal
qφd(d) = Cat(π̂d), where the parameters π̂d are given by a NN.

VampPrior

Of special consideration is the Variational Mixture of Posterior Prior (VampPrior,
Tomczak and Welling (2018)), where an approximation of the aggregated posterior is
considered as the prior of the model. Considering a set of pseudo-inputs, i.e. learnable
points in the observational space uk ∈ XD, the learnable prior is expressed as

pλ(z) =
1

K

K∑
k=1

qφ(z|uk) (3.14)

where λ = {φ,uk} are the set of prior parameters. In (Alemi et al., 2018), a generalized
approach by also learning the weights of the mixture was presented,

pλ(z) =

K∑
k=1

wkqφ(z|uk) (3.15)

with an information-theoretic perspective of the VAE to select relevant pseudo-inputs for
defining the prior. In both works, author demonstrate the effectiveness in covering the
posterior and reducing the hole effect.

3.4.3. Flow-based prior

Flows are also adequate for modeling the prior of latent variables in VAEs. By sam-
pling from the initial distribution p(z(0)), typically from a standard Gaussian, successive
layers transform to pθz (z

(L)) with learnable parameters θz. These parameters are learned
via the KL term in the ELBO,

L(x; θ, φ) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖pθz (z(L))). (3.16)
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In Flow terminology, this KL is typically referred to as the reverse KL, since the target
distribution is known. Examples of works using flows as the prior of VAEs are (Chen
et al., 2017a; Gatopoulos and Tomczak, 2021).

As an example, in a coauthored work published at the final stage of this thesis, (Koyuncu
et al., 2023), where a VAE framework was designed to generate weights of a neural net-
work, the posterior model was of such complexity that using a standard prior leaded to
unrealistic samples, decoded from holes of the latent space. This problem, explained above
in Section 3.3, was solved by incorporating a Real NVP (Real-valued, Non-volume Pre-
serving) Flow, mainly a Flow that incorporates affine coupling layers.

3.4.4. Diffusion-based prior

Recently, diffusion-based models have been proposed for incorporating extra flexibility
in the prior of the latent variables. In (Zeng et al., 2022), a hierarchical VAE for generating
3D point clouds is pretrained using a standard prior p(z), and during a second stage, a
Diffusion-based model is trained for denoising p(z(0)) to pθz (z

(T )) to match the learned
(approximate) posterior.

3.4.5. Hierarchical prior

Hierarchical priors are inherent to Hierarchical VAEs, where a group of L latent
variables {z1, ...zL} are hierarchically organized such that, starting from the deepest
p(zL) = N (0, I), each layer generates the prior of the next one in the hierarchy, following
the autoregressive procedure p(zl|zl+1) = N (µz(zl+1), σ2

z(zl+1) · I), where µz(·) and
σ2
z(·) account for functions modeled by Neural Networks. Parameterizing the prior in this

way leads to a highly interpretable manner in which information flows from the latents to
the observational space, similarly to the way information is organized in the real world.
Figure 3.6 illustrates this fact. Recent works like (Child, 2020; Vahdat and Kautz, 2020;
Maaløe et al., 2019; Sønderby et al., 2016) have shown astonishing results using these
hierarchical latent spaces in image generation.

In the second principal contribution of the present thesis (Peis et al., 2022), presented
in Chapter 5, Hierarchical VAEs are enhanced with Hamiltonian Monte Carlo, addressing
all the problems that appear when sampling from such complex autoregressive densities.

3.5. Advanced inference methods in VAEs

As discussed before, inference of the latent variable distributions is required for per-
forming ML optimization in VAEs. Due to the usage of NNs for parameterizing the
distributions, computation of the evidence is intractable, therefore, an approximation is
required, being Amortized Variational Inference the typical choice (Kingma and Welling,
2013). Within this method, reparameterized samples from the approximate posterior are
decoded for approximating the ELBO via Monte Carlo. The variational inference ap-
proximation introduces bias to the objective (Cremer et al., 2018), as depicted in Figure
3.3.

A group of recent works put effort in improving the quality of this approximated
objective. To list some recent examples, in (Rezende et al., 2014; Burda et al., 2015), the
following importance weighting estimator is proposed as an alternative for the ELBO

log p(x) ≥ log
1

K

S∑
s=1

p(x, zs)

q(zs|x)
(3.17)
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where zs is a sample from the approximate posterior qφ(z|x). Differently from the ELBO
of (3.10), the logarithm is computed outside the expectation. Using a sufficiently large
number of samples S leads to accurate estimations of the log-likelihood, like S = 512 for
the MNIST dataset. In (Mattei and Frellsen, 2019), authors adapt this model, named
Importance Weighted Autoencoder (IWAE, Burda et al. (2015)), to handling incomplete
data, as it will be discussed in next Section 3.6.

Another important approach is to leverage MCMC methods for obtaining better sam-
ples from the posterior. By defining q(0)(z|x) as the initial proposal, obtaining q(T )(z|x)
after T cycles from a MCMC method gives samples z(T ) that more accurately follow the
true posterior. For instance, in (Salimans et al., 2015), authors opened the direction for
merging variational inference and MCMC methods. They propose to modify the ELBO
using

log p(x) ≥ Eq [log p (x, zT )− log q (z0, . . . ,zT | x)

+ log r (z0, . . . ,zt−1 | x, zT )] ,
(3.18)

where r(·) are proposed auxiliary inference functions, with a Markov structure, for ac-
counting for the distributions at the intermediate steps of a HMC chain. In (Wolf et al.,
2016), authors achieve to guaranteeing the asymptotic convergence to the true poste-
rior by incorporating the acceptance step of the HMC algorithm. In (Caterini et al.,
2018), they show how to optimally select the needed reverse kernels and, by making use
of Hamiltonian Importance Sampling (HIS) (Neal, 2005), they achieve low-variance un-
biased estimators of the ELBO and its gradients using the reparameterization trick. In
(Ruiz et al., 2021), an efficient unbiased estimator is proposed for directly approximating
the gradients of the true log-likelihood, obtaining VAEs fitted with improved predictive
performance. Their estimator is based on an improved version of Iterated Sampling Im-
portance Resampling (ISIR, Andrieu et al. (2010)).

In (Campbell et al., 2021), Hamiltonian Monte Carlo is proposed due to its efficiency
and robustness for sampling from high-dimensional targets. The authors plug the HMC
sampler once the VAE is pretrained within a first stage using the ELBO. In a second stage,
the encoder is optimized for maximizing the ELBO, with the aim at getting a proper initial
proposal. The decoder, and the hyperparameters of HMC, are jointly optimized using
the target

LHMC(x) = E
q
(T )
φ (z)

[log pθ(x, z
(T ))]. (3.19)

To avoid overfitting to high density regions, a regularizer is proposed by inflating the
variance of the initial proposal with a tunable scaling parameter s. This parameter is
tuned by minimizing a well-posed discrepancy measure, named Sliced Stein Kernelized
Discrepancy, (SKSD, Gong et al. (2020)) that approximates the mismatch between the
true posterior p(z|x) and the implicit distribution q(T )(z|x). The choice of this discrep-
ancy is motivated by its robust behavior in high dimensional spaces, when compared
to the KSD (Liu et al., 2016). Further, it only requires samples from the approximate
posterior (provided by HMC) and gradients of the unnormalized true posterior.

LSKSD(x) = SKSD
(
q
(T )
φ (z|x; s), p(z|x)

)
= f(z(T ),∇zp(z,x)), (3.20)

A similar strategy is employed in one of the main contributions of this thesis (Peis
et al., 2022), presented in Chapter 5. This method is improved and generalized to work
with hierarchical densities z1:L, solving important issues associated with sampling from
autoregressive densities via HMC by using a novel reparameterization technique.
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3.6. VAEs for heterogeneous incomplete data

As discussed before, VAEs are successful deep learning methods for generating struc-
tured data by encoding in a (ideally meaningful) latent space, and decoding the latent
samples into the observational data. Typically, observed data is modeled as a multi-
dimensional vector, hence, the likelihood is measured by multidimensional probability
distributions. These distribution assume that every dimension of x belongs to the same
data type, which is far from what occurs in real datasets.

Unfortunately, databases often store and organize data that are noisy, heterogenous,
and incomplete. Continuous data, such as real-valued, positive or negative variables, or
discrete data, like binary, categorical or ordinal variables, need to be differently handled.
For instance, a video-on-demand platform might have incomplete and heterogenous data
about its users, such as their watched films, which are marked as favourite, their gender,
age, their time using the platform, etc. Likewise, Electronic Health Records of hospitals
may have different lab measurements and data from diverse specific studies about their
patients. Generative models that can learn the distribution and the hidden structure of
such heterogenous and incomplete datasets could help us to understand the data better,
fill in missing or corrupted values more robustly, identify outliers and make predictions
on new data (Valera and Ghahramani, 2017).

With similar importance, handling incomplete data is an essential aspect of ma-
chine learning. Any dataset can be affected by missing patterns, caused by a variety of
factors such as sensor malfunction, human error, or incomplete responses from survey
participants. If left unaddressed, missing data can lead to biased or inaccurate machine
learning models, resulting in poor predictions and flawed decision-making (Little and Ru-
bin, 2019). However, by effectively handling missing data, machine learning models can
make better use of available information, resulting in more accurate predictions and bet-
ter decision-making. Properly addressing missing data is critical to ensure the reliability
and generalizability of machine learning models, which can have far-reaching implications
for a variety of fields (Graham, 2012; Van Buuren, 2018).

Recent works have attacked the issue of modeling heterogeneous data by proposing
several strategies. In the following section, the most typical approach of factorizing over
dimensions of the likelihood, is presented. Afterwards, a more robust approach of in-
cluding a hierarchy of latent variables for getting more balanced likelihoods is explained.
This last strategy is the one employed in the second main contribution of the thesis (Peis
et al., 2022), presented in Chapter 5.

3.6.1. Likelihood factorization

This first method for adapting VAEs to handling heterogeneous incomplete data is
proposed in (Nazabal et al., 2020), and further utilized in other related work (Ma et al.,
2018; 2020; Mattei and Frellsen, 2019). First, to account for heterogeneous data, the
following factorization of the data likelihood per dimension is proposed

p(x, z) = p(z) pθ(x|z) = p(z)

D∏
d=1

pθd(xd|z). (3.21)

Thanks to this factorization, different data distributions per dimension can be utilized,
being parameterized separately by NNs with parameters θd. For instance, if D = 2 and
we have real-valued and binary dimensions, θd would be learned to parameterize the
corresponding univariate Gaussian and Bernoulli distributions.
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Figure 3.5: Univariate factorized likelihoods of an example with D = 2 variables, being
pθ1(x1|z) Gaussian (a) and pθ2(x2|z) Bernoulli (b) distributions. Whist in (a) the mode is
near 40, in (b) the maximum possible value is 0.8. Samples from the factorized likelihood
pθ1(x1|z)·pθ2(x2|z) are included in (c). These differences provoke unbalanced optimization
when considering the likelihood factorization approach of Nazabal et al. (2020).

Although this factorization allows for easily handling the different data types, one
considerable issue needs to be addressed. The values of the pdf from continuous data
distributions and the pmf of discrete distributions can be in different ranges. For in-
stance, in the previous bidimensional example (Figure 3.5), if the continuous data is
accurately decoded into the probability mass of a peaky Gaussian (small variance σ2),
then pθ1(x1|z) � pθ2(x2|z), since pθ2(x2|z) ≤ 1. A graphical interpretation of this un-
balance is provided in Figure 3.5. Hence, during the optimization, the objective might
focus only on accurately decoding the continuous variables. This problem is successfully
addressed by (Ma et al., 2020), as it will be described in the next Section 3.6.2. This
latter approach is the one utilized in one of the main contributions, as it will be discussed
in Chapter 5.

Regarding the incompleteness, the above factorization of the likelihood allows for
splitting the contributions of the observed and unobserved parts

p(x|z) = p(z)
∏
d∈O

pθd(xd|z)
∏
d∈U

pθd(xd|z), (3.22)

where x is an incomplete datapoint composed by D features, and can be expressed as a
joint distribution of two variables: xo, which represents the observed features, and xu,
which represents the missing features. The sets indexed by o and u are determined by
a missing mechanism that varies for each datapoint. The Missing At Random (MAR)
mechanism is typically used, which assumes that the missing indices are independent of
the missing feature values.

Within this approach, xu is modeled as a latent variable, leading to the following
marginal likelihood

p(xo) = log

∫
p(xo,xm, z)dz dxm. (3.23)

which, as previously stated, is intractable. Proposing the following variational model

q(z,xm|xo) = qφ(z|xo)
∏
d∈U

pθd(xd|z), (3.24)

which reuses the generative paths p(xd|z) for the unobserved set of features, allowing to
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express the ELBO as

L(z) = Eqφ(z|z)

[∑
d∈O

log pθ(xd|z)

]
−DKL(qφ(z|zO)||p(z)), (3.25)

or in broader terms, only the observed features contribute to the ELBO for inferring the
posterior and being reconstructed.

3.6.2. Two-level hierarchy for modeling mixed-type data

In a more recent method (Ma et al., 2020), an effective solution was proposed for
the problem of having unbalanced factorized likelihoods. Authors propose to introduce a
hierarchy of two latent variables, z and h. The former is a concatenation of D univariate
latent variables zd, and consequently shares dimensionality with x. Each zd is a unidi-
mensional Gaussian latent variable for generating the corresponding xd by parameterizing
its likelihood. The former, h, is a multidimensional latent variable, of smaller dimension,
that learns to generate the z vectors.

Within this setup, Ma et al. (2020) demonstrated that the model can be trained in a
two stage approach, where in an initial stage, the parameters of pθd(xd|zd) and qγd(zd|xd)
for each dimension are learned using the following ELBO on the observed data

Ld(xd) = Eqγd (zd|xd)
[
log

pθd(xd, zd)

qγd(zd | xd)

]
, d ∈ O. (3.26)

Each pθd(xd|zd) and qγd(zd|xd) comprises one of the named marginal VAEs for each
feature that are trained independently. In the second stage, the dependency VAE is
trained using the concatenated encodings, z, from the learned marginal VAEs, which are
all Gaussian, using the second ELBO

L(x) = Eq(h|z)∏d qγd (zd|xd)

[
log

pθ(z,h)

qφ(z|h)

]
, d ∈ O. (3.27)

Thanks to using this approach, the heterogeneous marginal properties of each dimension
are learned by the corresponding marginal VAE, whilst the interdependencies between the
features of the dataset can be captured by the dependency VAE in a balanced manner
using Gaussian distributions.

This methodology is used for efficiently handling heterogeneous data in the second
contribution of this thesis, the HH-VAEM model (Peis et al., 2022), presented in Chapter
5.

3.7. Hierarchical VAEs

The fundamental idea behind hierarchical models is that real data can often be struc-
tured hierarchically. Based on this fact, if a latent variable model is structured as a
hierarchy of autoregressive latent variables, it could potentially introduce an inductive
bias, limit the variety of models available, and ultimately encourage the flow of infor-
mation between observable and latent variables, as discussed in previous Section 2.4.8.
By using a hierarchical structure, it is enforced that the information flows from high-
level representations to more specific factors (as depicted in Figure 3.6), imitating the
way information is often organized in the real world. Nevertheless, when articulating
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Figure 3.6: Example of information encoded in a hierarchy of latent variables. Samples
generated by the VDVAE from (Child, 2020). From left (l = L) to right (l = 1), samples
are obtained by using zl:L sampled from the posterior, and z1:l−1 sampled from the prior.
More abstract information about the global structure, like the skin tone or hair color, is
encoded in the deepest layers of the hierarchy (left), whilst specific details of the face,
hair or background are encoded in shallower layers (right).

stochastic dependencies in the hierarchy, other issues require special attention, as it will
be discussed.

Mathematically, the aforementioned hierarchical generative model of L latent variables
can be expressed using the following joint distribution

p(x, z1, ...,zL) = p(x|z1) p(zL)

L−1∏
l=1

p(zl|zl+1), (3.28)

where the parameters are θ = {θx, θz1 , ..., θzL} of pθx(x|z1) and pφzl (zl|zl+1) are omitted
for the ease of convenience. For obtaining a sample, firstly zL (typically referred to as the
top or deepest variable) would be sampled from a fixed prior such as a standard normal.
Secondly, the Gaussian parameters of each p(zl|zl+1) would be outputs of independent
NNs to get the zl samples. Lastly, the bottom latent variable, i.e. the shallowest, would
be decoded using a NN into the parameters of the data distribution.

Hierarchical VAEs can be seen as a generalization of diffusion models or flow-based
models. Compared with the former, they do not have the restriction of fixing the varia-
tional proposal. Regarding the latter, they do not add the limitation of using specific NNs
that allow for invertible transformations. The price to pay for these degrees of freedom
is a delicate inference procedure, as it will be explained in the next section.

3.7.1. Inference in Hierarchical VAEs

Within a Hierarchical VAE framework, a natural inference proposal would be to infer
the variables following the reverse direction of the generation process. If the direction
from deeper to shallower layers is denoted by top-down , and equivalently, bottom-up
refers to the opposite direction, this first approach would be expressed mathematically as

q(z1:L|x) = q(z1|x)

L∏
l=2

q(zl|zl−1) (3.29)
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(a) Bottom-up (b) Top-down (c) Top-down residual

Figure 3.7: Variational proposals for the posterior of a Hierarchical VAE. In (a), an
intuitive but ill-posed approach would lead to posterior collapse of deepest variables. In
(b), this issue is relaxed by sharing the top-down stochastic path. In (c), posterior and
prior are tied by learning a residual posterior.

which is also depicted in Figure 3.7a with the dashed lines. Nevertheless, this natural
approach includes potential pitfalls to be considered. The ELBO within this setup is

L(x) = Eq(z1:L|x)[log p(x|z1)

−DKL(q(z1|x)||p(z1|z2))−
L−1∑
l=2

DKL(q(zl|zl−1)||p(zl|zl+1))−DKL(q(zL|zL−1)||p(zL))].

(3.30)
When the weights of the NNs that parameterize the model are randomly initialized, the
parameterized Gaussian distributions result to be standard. In case the decoder p(x|z1)
is sufficiently flexible, the optimization can focus on easily minimizing the last KL terms
for variables z2:L by making the approximate posterior uninformative, or mathematically
q(zl|zl−1,x) ≈ N (0, I) with l > 1. In other terms, the layers on top of the first one
would be ignored, acting as noise. This would result on a waste of parameters. The
same analysis extends for the cases when the information flows bottom-up, ending in any
intermediate layer, and ignoring the rest of layers on top.

Top-down inference

To solve the aforementioned inference issues for Hierarchical VAEs, recent works have
proposed an alternative way of performing a better-posed inference consisting on following
the top-down generative path, from deeper to shallower variables, also in the variational
proposal. Mathematically, the inference model would be given by

q(z1:L|x) = q(zL|x)

L−1∏
l=1

q(zl|x, zl+1), (3.31)

where a dependency with the top variable zl+1 is introduced. This model is depicted
in Figure 3.7b. A deterministic bottom-up path would be obtained by NNs that out-
put the variables r1:L from rl−1, being r0 = x. These variables, jointly with a sample
from the top zl+1, would be fed to a NN that outputs the parameters of q(zl|x, zl+1).
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This methodology is originally inspired by ResNet VAEs (Kingma et al., 2016) and Lad-
der VAEs (Sønderby et al., 2016), and later adapted in highly-relevant VAEs like BIVA
(Maaløe et al., 2019), NVAE (Vahdat and Kautz, 2020) or VDVAE (Child, 2020).

Of great importance is to highlight in this point of the present thesis that, although
this inference method is proven to be highly effective for Hierarchical VAEs, it is also based
on a lower bound on the log-evidence, due to the Gaussian approximation proposed by
the variational distribution. One of the contributions of this thesis (Peis et al., 2022),
presented in Chapter 5 is to develop a novel inference methodology for Hierarchical VAEs
based on advanced MCMC-based methods like Hamiltonian Monte Carlo that outperform
variational inference.

Model flexibility vs inference bias

As it has been discussed, one of the most brilliant research directions for VAEs is
discovering more expressive models, i.e. by proposing flexible priors, employing bigger
and more complex neural networks for encoder and decoder, or adding hierarchies of
latent variables for introducing useful inductive bias and expressiveness.

Nonetheless, the problem of balancing modeling flexibility and reducing bias in ap-
proximate inference is often a complex and interconnected issue, and addressing both
simultaneously in a unified approach can be exceedingly challenging. The intricate or-
ganization of the latent variables gives rise to complex posterior dependencies that are
not easily manageable and require special attention. Further, the bias introduced by the
variational approximation suffers from the curse of dimensionality, i.e. it is more a more
considerable when dimensionality increases.

For these reasons, improving the accuracy of approximate inference in these type of
models is crucial for leveraging their interesting properties. In Chapter 5, where the
second main research contribution of this thesis is presented, an example of a flexible
model with accurate is provided: the HH-VAEM. A hierarchical VAE is employed for
enforcing a natural flow of information from latents to data, and the bias due to the
Gaussian approximate posteriors for applying Variational Inference are overcame by using
a robust Hamiltonian Monte Carlo sampler.

3.8. Representation learning in VAEs

As discussed previously in Section 2.4.8, the problem of learning useful latent repre-
sentations with latent variable models can be challenging. By selecting a proper class
of models, i.e. designing the structure of the latent space, inductive bias can be added
in a way that meaningful representations can be obtained. In the context of generative
models, the Machine Learning area that study this usefulness is named Representation
Learning (Bengio et al., 2013; Eastwood and Williams, 2018; Higgins et al., 2018). Pre-
viously, representation learning was defined as the topic in Deep Learning that studies the
identification of hidden representations to automatically capture useful information from
the input. Here, this general definition is more specified to the relationships between input
data to be learned from, and latent factors that represent generative factors of variation,
within unsupervised or semi-supervised settings. Although the field of Representation
Learning is far from specific to VAEs and deep generative models (Hyvärinen and Oja,
2000; Yang and Amari, 1997), for the scope of this thesis, the discussion is focused on
VAEs.
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The usefulness of the latent space is strongly related with the concept of disentangle-
ment, explained in the next section.

3.8.1. The concept of Disentanglement

In the context of deep generative models, disentanglement (Locatello et al., 2019b;
Mathieu et al., 2019b) refers to the ability of the model to learn a representation of the
input data that separates the underlying factors of variation. This means that the
model should be able to identify and isolate individual components of the data that are
responsible for different aspects of the data, such as shape, color, texture, or pose in image
data. Disentanglement is defined by Eastwood and Williams (2018) as the ability of a
latent dimension d ∈ D to predict a genuine generative factor k ∈ K, with each latent
dimension being capable of capturing at most one generative factor. In a disentangled
representation, each dimension zi of the learned representation z corresponds to a separate
factor of variation, and changing one dimension affects only that factor and not others.
For example, in an image of a face, a disentangled representation would have separate
dimensions for the identity of the person, their facial expression, or the lighting conditions.

The goal of disentangled representation learning is to create more interpretable and
controllable generative models that can be used for tasks such as image editing, style trans-
fer, and data augmentation. Disentangled representations can also be useful in transfer
learning, where a model trained on one dataset can be adapted to a related dataset by only
changing the dimensions corresponding to the differences between the datasets. Achiev-
ing disentanglement in deep generative models is an active area of research, and there are
many techniques and approaches being developed to try to improve the disentanglement
of learned representations.

As stated before, the discussion will be oriented to study disentanglement in VAEs.
Within these models, the motivation resides in reaching independence between the dimen-
sions of the aggregated posterior qφ(z) ≈∑N

n=1 q(z|xn). In the existing body of research
on disentangled VAEs, a differentiation has been made between unsupervised techniques
and semi-supervised methods where the authentic generative factor values are available
for a certain subset of data, as studied in (Bouchacourt et al., 2018; Kingma et al., 2014;
N et al., 2017). Nonetheless, the attention of this thesis is put on a novel unsupervised
setting.

Challenges in disentangled representations

The extended definitions of disentanglement typically assume that D ≥ K, which is
not always the case in real data where a low-dimensional abstraction of a complex process
involving multiple factors is often learned instead. Thus, simplistic representations cannot
be found for more complex datasets that require richly structured dependencies to encode
the necessary information for generating high-dimensional data (Locatello et al., 2019b).
Moreover, for datasets with a finite set of data points, it may be unreasonable to assume
that the elements of the true generative process can be captured, as the data may not
contain enough information to recover them. Even if the data does contain the necessary
information, the computation required for model learning to achieve this may not be
feasible.

Achieving disentanglement in VAEs is a challenging task due to several factors. One
of the main difficulties is the inherent ambiguity of the concept of disentanglement itself,
as it lacks a precise mathematical definition. Disentanglement is often related to the
ability of a model to separate the underlying factors of variation in the data, but this can
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Figure 3.8: Illustration of decomposition from (Mathieu et al., 2019b). A cross-shaped
structure is utilized as prior for ensuring sparsity and disentanglement, by having two
directions of variation. On the top, latent space works as a deterministic Autoencoder.
Similar data is encoded in distant latent codes in the latent space. At the bottom, the
contrary case occurs. The posterior collapses and becomes uninformative, loosing expres-
sivity. Different latent distributions are decoded into similar samples. In the middle, the
ideal behavior is depicted, where the latent space representations cover the data space,
are slightly overlapped and encode the generative factors into the two variations.

be subjective and depends on the application. Additionally, the optimization process of
VAEs can encourage the model to use different latents for different factors of variation,
but it does not guarantee that each latent will capture only one factor, leading to the
so-called “collapsed” or “entangled” representations. Moreover, disentanglement requires
capturing higher-order interactions between the factors of variation, which is a challenging
problem for high-dimensional data. Finally, the evaluation of disentanglement is also a
difficult task, as there is no universally agreed-upon metric to assess it, and different
metrics may have conflicting goals.

Several recent works have shown efforts in proposing a more generalized, quantifiable
definition of disentanglement. For instance, in (Mathieu et al., 2019b), authors propose
a decomposition framework, depicted in Figure 3.8, to overcome the limitations of dis-
entanglement. In (Locatello et al., 2019a), authors analyze the fairness of disentangled
representations, observing that there is a consistent positive correlation in several models
between their disentangled results and fairness (non-biased, without group discrimina-
tion, etc.) in their predictions. In (Locatello et al., 2019b), the authors argue that the
standard definition of disentanglement in VAEs (i.e., each latent dimension corresponds
to a single generative factor) is overly restrictive and not necessary for useful representa-
tions. They propose an alternative definition of “semantically meaningful representations”
which allows for some overlap between the generative factors captured by different latent
dimensions, coinciding with Mathieu et al. (2019b).
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Disentanglement via semi-supervision

Several approaches have emerged (Bouchacourt et al., 2018; Esmaeili et al., 2019; John-
son et al., 2016b; N et al., 2017; Mathieu et al., 2019b) that recognize the need for richly
structured dependencies among latent dimensions. These approaches employ graphical
models or propose strategical objectives to overcome the limitations of disentanglement
and offer more generalizable interpretations. A remarkable recent work named β-VAE
(Higgins et al., 2016) introduces a hyperparameter β that controls the trade-off between
reconstruction accuracy and latent channel capacity, showing that it allows for finding
interpretable factors of variation in various datasets. A recent model named FactorVAE
(Kim and Mnih, 2018) achieves disentanglement by encouraging a factorization across the
dimensions of the latent representations.

As stated in (Locatello et al., 2019b), proper disentangled representations might not
be possible to be identified without introducing any supervision. Hence, several recent
work propose to efficiently incorporate inductive bias by semi-supervising potential gen-
erative factors. For instance, in (N et al., 2017), a framework is proposed for learning
disentangled representations of data using VAEs with general graphical models in the
encoder and decoder, that incorporate labels related to generative factors in some obser-
vations. The paper also defines a semi-supervised learning objective and an importance
sampling procedure for this framework. In (Bouchacourt et al., 2018), authors propose a
Multi-Level VAE (the ML-VAE) for learning two latent variables at the local and global
space by grouping samples that share some generative factor, e.g. identity in face images.

This last referenced work from (Bouchacourt et al., 2018) is considered the most
related work to one of the main contributions of this thesis, the UG-VAE model (Peis
et al., 2023), extensively presented in Chapter 4. In contrast to ML-VAE, UG-VAE learns
meaningful latent variables at the global level without any kind of supervision. Further,
we evidence that certain degree of disentanglement is possible by carefully designing the
graphical model.
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CHAPTER 4

Unsupervised learning of
global factors in VAEs

Since its first proposal by Kingma and Welling (2013), Variational Autoencoders (VAEs)
have evolved into a vast amount of variants. To name some representative examples,

we can include VAEs with latent mixture models priors (Dilokthanakul et al., 2016),
adapted to model time-series (Chung et al., 2015; Bianchi et al., 2019; Fraccaro et al.,
2016), trained via deep hierarchical variational families (Ranganath et al., 2016; Tomczak
and Welling, 2018), with enhanced, parametric and robust priors (Tomczak and Welling,
2018; Joo et al., 2020; Van Den Oord et al., 2017), that include advanced techniques
for gradient estimation (Ruiz et al., 2021; Burda et al., 2015) or that naturally handle
heterogeneous data types and missing data (Nazabal et al., 2020; Ma et al., 2019a; 2020;
Peis et al., 2022).

The large majority of VAE-like models are designed over the assumption that data is
i.i.d., which remains a valid strategy for simplifying the learning and inference processes
in generative models with latent variables. A different modelling approach may drop the
i.i.d. assumption with the goal of capturing a higher level of dependence between samples.
Inferring such kind of higher level dependencies can directly improve current approaches
to find interpretable disentangled generative models (Bouchacourt et al., 2018), to perform
domain alignment (Heinze-Deml and Meinshausen, 2017; Guerrero-López et al., 2022) or
to ensure fairness and unbiased data (Barocas et al., 2017).

The main contribution presented in this chapter is to show that a deep probabilistic
VAE non i.i.d. model with both local and global latent variable can capture meaningful
and interpretable information among data points in a completely unsupervised fashion.
Namely, weak supervision to group the data samples is not required. In the following
we refer to our model as Unsupervised Global VAE (UG-VAE). We combine a
clustering inducing mixture model prior in the local space, that helps to separate the
fundamental data features that an i.i.d. VAE would separate, with a global latent variable
that modulates the properties of such latent clusters depending on the observed samples,
capturing fundamental and interpretable data features. We demonstrate such a result
using both CelebA (Liu et al., 2015), MNIST (LeCun, 1998) and the 3D FACES dataset
(Paysan et al., 2009) in the experimental Section 4.3. Furthermore, we show that the
global latent space can explain common features in samples coming from two different
databases without requiring any domain label for each sample, establishing a probabilistic
unsupervised framework for domain alignment. Up to our knowledge, UG-VAE is the first
VAE model in the literature that performs unsupervised domain alignment using global
latent variables.

Finally, we demonstrate that, even when the model parameters have been trained
using an unsupervised approach, the global latent space in UG-VAE can discriminate
groups of samples with non-trivial structures, separating groups of people with black and
blond hair in CelebA or series of numbers in MNIST. In other words, if weak supervision
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is applied at test time, the posterior distribution of the global latent variable provides
with an informative representation of the user defined groups of correlated data.

The chapter is organized as follows: in Section 4.1 we provide with a review on recent
related methods for achieving disentanglement by model design or semi-supervision. In
Section 4.2, the UG-VAE model is presented, extensively describing its generative and
inference models and key components, as well as the final ELBO objective. Section 4.3
provides with all the experiments that evidence our contributions. Finally, in Section 4.4,
we include our conclusions based on the presented results. The findings described in this
chapter were published in the Pattern Recognition Journal (Peis et al., 2023).

4.1. Related work

Non i.i.d. deep generative models are getting recent attention but the literature is
still scarse. First we find VAE models that implement non-parametric priors: in (Gyawali
et al., 2019) the authors make use of a global latent variable that induces a non-parametric
Beta process prior, and more efficient variational mechanism for this kind of IBP prior
are introduced in (Xu et al., 2019). Second, both (Tang et al., 2019) and (Korshunova
et al., 2018) proposed non i.i.d. exchangable models by including correlation information
between datapoints via an undirected graph. Third, conditional dependencies with super-
vised classes are modeled in (Antoran and Miguel, 2019) with the aim at performing nat-
ural clustering at the latent space and disentangle class-dependent factors. Finally, some
other works rely on simpler generative models (compared to these previous approaches),
including global variables with fixed-complexity priors, typically a multi-variate Gaussian
distribution, that aim at modelling the correlation between user-specified groups of cor-
related samples (e.g. images of the same class in MNIST, or faces of the same person). In
(Bouchacourt et al., 2018) or (Hosoya, 2019), authors apply weak supervision by grouping
image samples by identity, and include in the probabilistic model a global latent variable
for each of these groups, along with a local latent variable that models the distribution
for each individual sample. In (Liu et al., 2021a), authors use co-supervision for achieving
stationary state in learning graphs for multi-view clustering. Below we specify the two
most relevant lines of research, in relation to our work.

4.1.1. VAEs with mixture priors

Several previous works have demonstrated that incorporating a mixture in the latent
space leads to learn significantly better models. In (Johnson et al., 2016b) authors intro-
duce a latent GMM prior with nonlinear observations, where the means are learned and
remain invariant with the data. The GMVAE proposal by (Dilokthanakul et al., 2016)
aims at incorporating unsupervised clustering in deep generative models for increasing
interpretability. In the VAE with a VAMP prior model (Tomczak and Welling, 2018), the
authors define the prior as a mixture with components given by approximated variational
posteriors, that are conditioned on learnable pseudo-inputs. This approach leads to an
improved performance, avoiding typical local optima difficulties that might be related to
irrelevant latent dimensions.

4.1.2. Semi-supervised deep models for grouped data

In contrast to the i.i.d. vanilla VAE model in Figure 4.1 (a), and its augmented ver-
sion for unsupervised clustering, GMVAE, in Figure 4.1 (b), the graphical model of the
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(a) VAE (b) GMVAE (c) ML-VAE (d) NestedVAE

Figure 4.1: Comparison of four deep generative models. Dashed lines represent the graph-
ical model of the associated variational family. The Vanilla VAE (a), the GMVAE (b),
and semi-supervised variants for grouped data; ML-VAE (c) and NestedVAE (d).

Multi-Level Variational Autoencoder (ML-VAE) in (Bouchacourt et al., 2018) is shown in
Figure 4.1 (c), where G denotes the number of groups. ML-VAE includes a local Gaussian
variable Si that encodes style-related information for each sample, and a global Gaussian
variable CG is shared within a group of samples. For instance, they feed their algorithm
with batches of face images from the same person, modeling content shared within the
group that characterize a person. This approach leads to learning disentangled repre-
sentations at the group and observations level, in a content-style fashion. Nevertheless,
the groups are user-specified, hence resulting in a semi-supervised modelling approach.
In (Vowels et al., 2020) authors use weak supervision for pairing samples. They imple-
ment two outer VAEs with shared weights for the reconstruction, and a Nested VAE that
reconstructs latent representation off one to another, modelling correlations across pairs
of samples. The graphical model for Nested VAE is depicted in Figure 4.1 (d). Despite
the fact that semi-supervision is proved to improve performance for some deep generative
models (Gordon and Hernández-Lobato, 2017; 2020), it requires prior knowledge about
the data that we do not assume in this work.

4.2. Unsupervised Global VAE

UG-VAE is a deep generative VAE framework for modeling non-i.i.d. data with global
dependencies. It generalizes the ML-VAE graphical model in Figure 4.1 (c), combining
the global model with a mixture prior to i) remove the group supervision, ii) include a
clustering-inducing prior in the local space, and iii) propose a more structured variational
family. The latent discrete variable d is expected to represent the inferred group with no
supervision needed.

4.2.1. Generative model

Figure 4.2 represents the generative graphical model of UG-VAE. The global variable
β ∈ Rg modulates the prior, inducing shared properties within a group of B samples
X = {x1, ...,xB} ⊆ RD, while the local variable z encodes the local properties for each
datapoint. Although we use this notation for the global latent space, we would like
to remark that β is not a parameter as the β defined in (Higgins et al., 2016). We
denote by G the number of groups we jointly use to amortize the learning of the model
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(a) Generative model (b) Inference model

Figure 4.2: Generative (left) and inference (right) of UG-VAE.

parameters. During amortized variational training, groups are simply random data mini-
batches from the training dataset, being G the number of data mini-batches. We could
certainly take B = N (the training set size) and hence G = 1, but this leads to a
less interpretable global latent space (too much data to correlate with a single global
realization), and a slow training process. On the contrary, a small batch size might result
in highly dispersed global properties, difficult to capture and again hardly interpretable.
The difficulty in choosing a proper value for the batch size limits the potential of learning
useful representations, and arises in the lack of agnostic metrics for performing objective
validations. Although some useful representation metrics (e.g. (Heusel et al., 2017)) could
be used for validating B, we show results in Section 5.4 demonstrating that reasonable
batch sizes values that are widely employed in similar works (namely B = 128) successfully
learn disentangled global representations.

Conditioned to β, data samples are distributed according to a Gaussian mixture local
(one per data) latent variable Z = {z1, ...,zB} ⊆ Rd, and d = {d1, ..., dB} ⊆ {1, ...,K} are
independent discrete categorical variables with uniform prior distributions. This prior,
along with the conditional distribution p(zi|di,β), defines a Gaussian mixture latent
space, which helps to infer similarities between samples from different batches (by assign-
ing them to the same cluster), and thus, di plays a similar role than the semi-supervision
included in (Bouchacourt et al., 2018) by grouping. Our experimental results demonstrate
that this level of structure in the local space is crucial to acquire interpretable information
at the global space.

The joint distribution for a single group is therefore defined by:

pθ(X,Z,d,β) = p(X|Z,β) p(Z|d,β) p(d) p(β) (4.1)

where the likelihood term of each sample is a Gaussian distribution, whose parameters
are obtained from a concatenation of zi and β as input of a decoder network:

p(X|Z,β) =

B∏
i=1

p(xi|zi,β) =

B∏
i=1

N
(
µθx([zi,β]),Σθx([zi,β])

)
(4.2)

In contrast with (Johnson et al., 2016b), where the parameters of the clusters are learned
but shared by all the observations, in UG-VAE, the parameters of each component are
obtained with networks fed with β. Thus, the prior of each local latent continuous variable
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is defined by a mixture of Gaussians, where di defines the component and β is the input
of a NN that outputs its parameters:

p(Z|d,β) =

B∏
i=1

p(zi|di,β) =

B∏
i=1

N
(
µ

(di)
θz

(β),Σ
(di)
θz

(β)
)

(4.3)

hence we trained as many NNs as discrete categories. This local space encodes samples in
representative clusters to model local factors of variation. The prior of the discrete latent
variable is defined as uniform:

p(d) =

B∏
i=1

Cat(π) πk = 1/K (4.4)

and the prior over the continuous latent variable β follows an isotropic Gaussian, p(β) =
N (0, I).

(a) β-VAE (b) ML-VAE

(c) ML-VAE

Figure 4.3: Illustration of the inductive bias introduced by the generative model in β-
VAE (a), ML-VAE (b) and the proposed UG-VAE (c). β-VAE compresses all features in
a single latent space, while ML-VAE uses a global component that needs to be supervised
during training. In UG-VAE, we propose a flexible hierarchy of both global and local
mixture of components that enables learning group-features in the latent space in an
unsupervised manner.

By making use of the presented generative model, we propose a flexible hierarchy of
both global and local mixture of components that, while being trained on random-mini
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batches, it is able to exploit the augmented degrees of freedom for capturing group-
features in the latent space in an unsupervised manner. A graphical representation of
how UG-VAE structures the information in the latent space is provided in Figure 4.3.
Further, as shown in Section 4.2.2, the posterior approximation results from an individual
contribution of each data point that favors group separation across latent spaces.

4.2.2. Inference model

The graphical model of the proposed variational family is shown in Figure 4.2(b):

qφ(Z,d,β|X) = q(Z|X) q(d|Z)q(β|X,Z) (4.5)

where we employ an encoder network that maps the input data into the local latent
posterior distribution, which is defined as a Gaussian:

q(Z|X) =

B∏
i=1

q(zi|xi) =

B∏
i=1

N (µφz (xi),Σφz (xi)) (4.6)

Given the posterior distribution of z, the categorical posterior distribution of di is parametrized
by a NN that takes zi as input

q(d|Z) =

B∏
i=1

q(di|zi) =

B∏
i=1

Cat(πφd(zi)) (4.7)

The approximate posterior distribution of the global variable β is computed as a product
of local contributions per datapoint within a randomly sampled batch. This strategy,
as demonstrated by (Bouchacourt et al., 2018), outperforms other approaches like, for
example, a mixture of local contributions, as it allows to accumulate group evidence. For
each sample, a NN encodes xi and the Categorical parameters πφd(zi) in a local Gaussian

q(β|X,Z) = N
(
µβ ,Σβ

)
=

1

Z

B∏
i=1

N
(
µφβ ([xi, πφd(zi)]),Σφβ ([xi, πφd(zi)])

)
, (4.8)

being Z the normalizing constant. If we denote by µi and Σi the parameters obtained by
networks µφβ and Σφβ , respectively, the parameters of the global Gaussian distribution
are given, following (Bromiley, 2003), by:

Λβ = Σ−1β =

B∑
i=1

Λi

µβ = (Λβ)−1
B∑
i=1

Λiµi

(4.9)

where Λβ = Σ−1β is defined as the precision matrix, which we model as a diagonal matrix.

4.2.3. Evidence Lower Bound

Overall, the evidence lower bound reads as follows:

L(X; θ, φ) = Eq(β) [Li(xi; θ, φ)]− Eq(d) [DKL (q(β|X,Z)‖p(β))] (4.10)
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The resulting ELBO is an expansion of the ELBO for a standard GMVAE with a new
regularizer for the global variable. As the reader may appreciate, the ELBO for UG-VAE
does not include extra hyperparameters to enforce disentanglement, like other previous
works as β-VAE, and thus, no extra validation is needed apart from the parameters of
the networks architecture, the number of clusters and the latent dimensions. We denote
by Li each local contribution to the ELBO:

Li(xi; θ, φ) = Eq(di,zi) [log p(xi|zi, di,β)]

− Eq(di) [DKL (q(zi|xi)‖p(zi|di,β))]−DKL (q(di|zi)‖p(di)))
(4.11)

The first part of (4.10) is an expectation over the global approximate posterior of
the so-called local ELBO. This local ELBO differs from the vanilla ELBO proposed by
(Kingma and Welling, 2013) in the regularizer for the discrete variable di, which is com-
posed by the typical reconstruction term of each sample and two KL regularizers: one
for zi, expected over di, and the other over di. The second part in (4.10) is a regularizer
on the global posterior. The expectations over the discrete variable di are tractable and
thus, analytically marginalized.

In contrast with GMVAE (Figure 4.1 (b)), in UG-VAE, β is shared by a group of
observations, therefore the parameters of the mixture are the same for all the samples
in a batch. In this manner, within each optimization step, the encoder q(β|X,Z) only
learns from the global information obtained from the product of Gaussian contributions of
every observation, with the aim at configuring the mixture to improve the representation
of each datapoint in the batch, by means of p(Z|d,β) and p(X|Z,β). Hence, the control of
the mixture is performed by using global information. In contrast with ML-VAE (whose
encoder q(CG|X) is also global, but the model does not include a mixture), in UG-VAE,
the β encoder incorporates information about which component each observation belongs
to, as the weights of the mixture inferred by q(d|Z) are used to obtain q(β|X,Z). Thus,
while each cluster will represent different local features, moving β will affect all the
clusters. In other words, modifying β will have some effect in each local cluster. As the
training progresses, the encoder q(β|X,Z) learns which information emerging from each
batch of data allows to move the cluster in a way that the ELBO increases.

4.3. Experiments

In this section we demonstrate the ability of the UG-VAE model to infer global factors
of variation that are common among samples, even when coming from different datasets.
In all cases, we have not validated in depth all the networks used, we have merely rely on
encoder/decoder networks proposed in state-of-the-art VAE papers such as (Kingma and
Welling, 2013), (Bouchacourt et al., 2018) or (Higgins et al., 2016). Our results must be
hence regarded as a proof of concept about the flexibility and representation power of UG-
VAE, rather than fine-tuned results for each case. Hence there is room for improvement
in all cases. Details about network architecture and training parameters are provided in
the Appendix A.2.

4.3.1. Unsupervised learning of global factors

Qualitative analysis

In this section we first asses the interpretability of the global disentanglement features
inferred by UG-VAE over both CelebA and MNIST. In Figure 4.4 we show samples of
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Figure 4.4: Sampling from UG-VAE (first three columns) and ML-VAE (last column) for
CelebA (top) and MNIST (bottom). We include samples from 3 local clusters of UG-VAE
from a total of K = 20 for CelebA and K = 10 for MNIST. In CelebA (top), the global
latent variable disentangles in skin color, beard and face contrast, while the local latent
variable controls hair and light orientation. In MNIST (bottom), β controls cursive
grade, contrast and thickness of handwriting, while z varies digit shape. In ML-VAE
(right column), both spaces are unimodal and the disentanglement is hardly interpretable
when we feed the data without semi-supervision.

the generative model as we explore both the global and local latent spaces. We perform a
linear interpolation with the aim at exploring the hypersphere centered at the mean of the
distribution and with radius σi for each dimension i. Instead of finding influential latent
factors (Liu et al., 2020) and interpolate them (fixing the rest), we choose to maximize
the variation range across every dimension, moving diagonally through the latent space.
Rows correspond to an interpolation on the global β between [−1, 1] on every dimension
(p(β) follows a standard Gaussian). As the local p(z|d,β) ((4.3)) depends on d and β, if

we denote µz = µ
(d)
z (β), the local interpolation goes from [µz0 − 3, µz1 − 3, ...µzd − 3] to

[µz0 + 3, µz1 + 3, ..., µzd + 3]. The range of ±3 for the local interpolation is determined

to cover the variances Σ(d)
z (β) that we observe upon training the model for MNIST and

CelebA. The every image in Figure 4.4 correspond to samples from a different cluster
(fixed values of d), in order to facilitate the interpretability of the information captured
at both local and global levels. By using this set up, we demonstrate that the global
information tuned by β is different and clearly interpretable inside each cluster. In order
to visually remark the advantage of capturing global correlations among samples with
UG-VAE, we include in Figure 4.5 an interpolation in the latent space of β-VAE. We
explore from z = [−1,−1, ...,−1] to z = [1, 1, ..., 1], given that the prior is an isotropic
Gaussian. As the reader may appreciate, only one row is included as β-VAE does not
include global space. In this case, moving diagonally through the latent space starts
from a blond woman and ends in a brunette woman with the same angle face. Thus,
the local space is in charge of encoding both content and style aspects. Although in β-
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Figure 4.5: Interpolation in the prior latent space of β-VAE with β = 10, using the same
networks architecture than in the local part of UG-VAE. Interpolation consists on 7 steps
from z = [−1,−1, ...,−1] to z = [1, 1, ..., 1].

VAE, authors analyze the disentanglement in each dimension of the latent space, we do
not study whether each dimension of z represents an interpretable generative factor in
UG-VAE or not, as it is out of the scope for this work. The novelty lies on the fact that,
apart from the local disentanglement, our model adds an extra point of interpretability
through the global space.

The total number of clusters is set toK = 20 for CelebA andK = 10 for MNIST. Three
of these components are presented in Figure 4.4. We can observe that each row (each
value of β) induces a shared generative factor, while z is in charge of variations inside
this common feature. For instance, in CelebA (top), features like skin color, presence
of beard or face contrast are encoded by the global variable, while local variations like
hair style or light direction are controlled by the local variable. In a simple dataset
like MNIST (bottom), results show that handwriting global features as cursive style,
contrast or thickness are encoded by β, while the local z defines the shape of the digit.
The characterization of whether these generative factors are local/global is based on an
interpretation of the effect that varying z and β provokes in each image within a batch,
and in the whole batch of images, respectively. In Appendix A.1.1, we reproduce the
same figures for the all the clusters, in which we can appreciate that there is a significant
fraction of clusters with visually interpretable global/local features.

We stress here again the fact that the UG-VAE training is fully unsupervised: data
batches during training are completely randomly chosen from the training dataset, with
no structured correlation whatsoever. Unlike other approaches for disentanglement, see
(Higgins et al., 2016) or (Mathieu et al., 2019b), variational training in UG-VAE does
not come with additional ELBO hyperparameters that need to be tuned to find a proper
balance among terms in the ELBO.

One of the main contributions in the design of UG-VAE is the fact that, unless we
include a clustering mixture prior in the local space controlled by the global variable β,
unsupervised learning of global factors is non-informative. To illustrate such a result,
in Figure 4.4 (right most column) we reproduce the same results but for a probabilistic
model in which the discrete local variable d is not included. Namely, we use the ML-VAE
in Figure 4.2(c) but we trained it with random data batches. In this case, the local space
is uni-modal given β and we show interpolated values between -1 to 1. Note that the
disentanglement effect of variations in both β and z is mild and hard to interpret.

Quantitative analysis

It remains a challenge for generative models to obtain a quantitative appropriate
metric for evaluating the quality of the generated images. In this work, we employ the
FID (Frechet Inception Distance), proposed by Heusel et al. (2017), which summarizes
the distance between the Inception feature vectors (Szegedy et al., 2015) for real and
generated images in the same domain, with the advantage that it is correlated with the
better quality of the generated images. In Table 4.1 we include the score for samples from
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Figure 4.6: FID score between subsets of 1280 images from CelebA with a given attribute
and 1280 images generated with UG-VAE from a fixed cluster d.

UG-VAE, ML-VAE and β-VAE. In both CelebA and MNIST, UG-VAE obtain lower
distance and thus outperforms the other methods in the quality of the generated samples.
We show empirically that the way the information is structured in the latent space of
UG-VAE allows an improved generation of images. The reasons are: i) differently from
our model and ML-VAE, in β-VAE the global information shared by groups of samples is
not captured. ii) UG-VAE latent space is much more expressive than ML-VAE, where the
conditional prior p(z|β) is unimodal. In other words, the prior p(z|d,β) in UG-VAE is a
generalization of ML-VAE (K = 1). Therefore, in UG-VAE the latent space is augmented,
which increases the representation capacity of the model.

Method UG-VAE ML-VAE β-VAE

CelebA 162.3± 1.2 204.7± 2.4 173.5± 0.6
MNIST 63.6± 2.4 108.9± 4.5 133.2± 0.8

Table 4.1: FID score between subsets of 1280 images from the test sets of CelebA and
MNIST and 1280 images generated with UG-VAE, ML-VAE and β-VAE. Results are
provided as the mean± std FID score of 9 repetitions.

In the following quantitative analysis, and with the intention at showing the wide spec-
trum for factor representation capacity provided by UG-VAE, we compute the FID metric
between groups of CelebA images that share a given attribute, and samples generated by
UG-VAE from a selected component d, in order to visualize whether the attributes are
correlated with some of the components. These results are given in Figure 4.6. As one
may appreciate, UG-VAE is able to encode human perceptible factors within each compo-
nent of the mixture, and images from the same attribute present different FID scores for
the set of clusters. Within unimodal models (for instance, ML-VAE or β-VAE), such rich
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(a) CelebA-FACES (b) β TSNE 2D space. (c) FACES-FACES

(d) 3D Cars-3D Chairs (e) 3D Cars-Cars (f) CelebA-FACES with ML-
VAE

Figure 4.7: Interpolation in local (columns) and global (rows) posterior spaces, fusing
several datasets, using UG-VAE from (a) to (e). In (a) the interpolation goes between
the posteriors of a sample from CelebA dataset and a sample from FACES dataset. In (b)
we plot the t-SNE map of the samples from each dataset. In (c) the interpolation goes
between samples from the same dataset. In (d) and (e) we include interpolations from
3D Cars to Chairs, and for 3D Cars to Cars Dataset, respectively. In (f) we reproduce
the interpolation using the latent space of ML-VAE.

representation is not possible. We are able to obtain a set of basis faces that are tuned
by the global variable. Incorporating the mixture allows β to control the distribution of
clusters for representing groups that can be compared to the semi-supervision applied in
ML-VAE by grouping.

4.3.2. Domain alignment

In this section, we evaluate the UG-VAE performance in an unsupervised domain
alignment setup. During training, the model is fed with data batches that include random
samples coming from two different datasets. In particular, we train our model with a
mixed dataset between CelebA and 3D FACES (Paysan et al., 2009), a dataset of 3D
scanned faces, with a proportion of 50% samples from each dataset inside each batch.

Upon training with random batches, in Figure 4.7, we perform the following exper-
iment using domain supervision to create test data batches. We create two batches
containing only images from CelebA and 3D FACES. Let β1 and β2 be the mean global
posterior computed using (4.8) associated for each batch. For two particular images in
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these two batches, let z1 and z2 be the mean local posterior of these two images, com-
puted using (4.3). Figure 4.7 (a) shows samples of the UG-VAE model when we linearly
interpolate between β1 and β2 (rows) and between z1 and z2 (columns)1. Certainly β
is capturing the domain knowledge. For fixed z, e.g. z1 in the first column, the interpo-
lation between β1 and β2 is transferring the CelebA image into the 3D FACES domain
(note that background is turning white, and the image is rotated to get a 3D effect). Al-
ternatively, for fixed β, e.g. β1 in the first row, interpolating between z1 and z2 modifies
the first image into one that keeps the domain but resembles features of the image in the
second domain, as face rotation.

In Figure 4.7(b) we show the 2D t-SNE plot of the posterior distribution of β for
batches that are random mixtures between datasets (grey points), batches that contain
only CelebA faces (blue squares), and batches that contain only 3D faces (green triangles).
We also add the corresponding points of the β1 and β2 interpolation in Figure 4.7(a). In
Figure 4.7(c), we reproduce the experiment in (a) but interpolating between two images
and values of β that correspond to the same domain (brown interpolation line in Figure
4.7(b)). As expected, the interpolation of β in this case does not change the domain,
which suggests that the domain structure in the global space is smooth, and that the
interpolation along the local space z modifies image features to translate one image into
the other. In Figure 4.7(d) and (e) experiments with more datasets are included. When
mixing the 3DCars dataset (Fidler et al., 2012) with the 3D Chairs dataset (Aubry et al.,
2014), in Figure 4.7(d), we find that certain correlations between cars and chairs are
captured. Interpolating between a racing car and an office desk chair leads to a white car
in the first domain (top right) and in a couch (bottom left). In Figure 4.7 (e), when using
the 3D Cars along with the Cars Dataset (Krause et al., 2013), rotations in the cars are
induced.

Finally, in 4.7(f) we show that, as expected, the rich structured captured by UG-VAE
is lost when we do not include the clustering effect in the local space, i.e. if we use ML-
VAE with unsupervised random data batches, and all the transition between domains is
performed within the local space.

4.3.3. UG-VAE representation of structured non-trivial data batches

In the previous subsection, we showed that the UG-VAE global space is able to sepa-
rate certain structure in the data batches (e.g. data domain) even though during training
batches did not present such an explicit correlation. Using UG-VAE trained over CelebA
with unsupervised random batches of 128 images as a running example, in this section
we want to further demonstrate this result.

In Figure 4.8 we show the t-SNE 2D projection of structured batches using the pos-
terior β distribution in (4.8) over CelebA and MNIST test images. In Figure 4.8(a), we
display the distribution of batches containing only men and women, while in Figure 4.8(b)
the distribution of batches containing people with black or blond hair. In both cases we
show the distribution of randomly constructed batches as the ones in the training set. To
some extend, in both cases we obtain separable distributions among the different kinds of
batches. A quantitative evaluation can be found in Table 4.2. We have employed samples
from the β distribution to train a supervised classifier that discriminates between differ-
ent types of batches. When random batches are not taken as a class, the separability is
evident. When random batches are included, it is expected that the classifier struggles

1Note that since both β and z are deterministically interpolated, the discrete variable d plays no role
to sample from the model.
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to differentiate between a batch that contains 90% of male images and a batch that only
contain male images, hence the drop in accuracy for the multi-case problem.

(a) (b)

(c)

Figure 4.8: 2D t-SNE projection of the UG-VAE β posterior distribution of structured
batches of 128 CelebA images. UG-VAE is trained with completely random batches of
128 train images.

An extension with similar results when using structured grouped batches from MNIST
dataset for testing our model is exposed in Figure 4.8(c). In this experiment, the groups
are digits that belong to certain mathematical series, including even numbers, odd num-
bers, Fibonacci series and prime numbers. We prove that UG-VAE is able to discriminate
among their global posterior representations.
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Table 4.2: Batch classification accuracy using samples of the posterior β distribution.

Batch categories Classifier Train accuracy Test accuracy

Black (0) vs blond (1)
Linear SVM 1.0 0.95
RBF SVM 1.0 0.98

Black (0) vs blond (1) vs random (2)
Linear SVM 0.91 0.54
RBF SVM 0.85 0.56

Male (0) vs female (1)
Linear SVM 1.0 0.85
RBF SVM 1.0 0.85

Male (0) vs female (1) vs random (2)
Linear SVM 0.84 0.66
RBF SVM 0.89 0.63

4.4. Conclusion

In this Chapter we have presented UG-VAE, an unsupervised deep generative model
able to capture both local and global factors from batches of data samples. Unlike sim-
ilar approaches in the literature, by combining a structured clustering prior in the local
latent space with a Gaussian global prior and a structured variational family, we have
demonstrated that interpretable group features can be inferred from the global space in a
completely unsupervised fashion. Model training does not require artificial manipulation
of the ELBO to force latent interpretability, which makes UG-VAE stand out w.r.t. most
of the current disentanglement approaches using VAEs.

The ability of UG-VAE to infer diverse features from the training set is further demon-
strated in a domain alignment setup, where we show that the global space allows interpo-
lation between domains, and also by showing that images in correlated batches of data,
related by non-trivial features such as hair color or gender in CelebA, define identifiable
structures in the posterior global space.

The code is publicly available at https://github.com/ipeis/UG-VAE. The package
includes the UG-VAE model, and all the experiments of this paper for reproducibility
purposes.

74

https://github.com/ipeis/UG-VAE


CHAPTER 5

Hierarchical VAEs and
Hamiltonian Monte Carlo

Many real-world unsupervised learning tasks require dealing with complicated datasets
with mixed types (real, positive-valued, continuous, or discrete) and missing values. For
this purpose, variational autoencoders (Kingma and Welling, 2013; Rezende et al., 2014;
Kingma and Welling, 2019) stand out in the recent literature as robust generative models
that efficiently handle high-dimensional data. However, in their naive configuration, every
data dimension is assumed to have similar statistical properties (i.e., homogeneity), and
all dimensions are considered to be completely observed. Both assumptions won’t hold
in many real-world scenarios. Recent works have adapted VAEs to handle incomplete
(Collier et al., 2020; Ma et al., 2018; Garnelo et al., 2018; Mattei and Frellsen, 2019) and
mixed-type data (Nazabal et al., 2020; Ma et al., 2020; Gong et al., 2021), and demon-
strated improved performance in downstream tasks such as missing data imputation and
active information acquisition. Despite these advances, existing approaches are far from
optimal as they are based on restrictive design choices: 1), only one layer of latent vari-
ables are considered; 2), Gaussian posterior approximations are usually adopted. These
will lead to limited flexibility and additional bias, especially under real-world settings
with complex mixed-type incomplete data.

In the literature, the issue of model flexibility and inference bias are often addressed
separately. For example, approximate inference bias can be reduced by using Monte Carlo
sampling (Salimans et al., 2015; Thin et al., 2021). More specifically, Hamiltonian Monte
Carlo (HMC) (Duane et al., 1987; Betancourt and Girolami, 2015) stands out among
MCMC methods in machine learning due to its superior efficiency for exploring the target
density. In the context of VAE, HMC has also been combined with stochastic variational
inference (Caterini et al., 2018) for improving the training of VAEs. On the other hand,
the flexibility of VAEs can be improved by considering hierarchical VAEs with multiple
layers of hidden variables (Sønderby et al., 2016; Maaløe et al., 2019; Vahdat and Kautz,
2020; Child, 2020). By using a hierarchical structure in the latent space, they enforce the
information to flow from high-level representations to more specific observable factors,
imitating the way information is often organized in the real world.

However, the issue of modeling flexibility and approximate inference bias are often
heavily intertwined, and addressing them simultaneously in a joint manner is highly non-
trivial. The hierarchical organization of the latent variables creates complicated posterior
dependencies that are not straightforward to deal with and require special consideration.
To improve Gaussian approximate inference, most works opt by defining shared paths
between the recognition and generative networks. While this makes hierarchical VAEs
practical, the bias introduced by the Gaussian approximations is still present. To the best
of our knowledge, none of the aforementioned hierarchical VAEs has been previously com-
bined with Monte Carlo algorithms for improving over standard Gaussian approximate
inference.
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To overcome such limitations, we focus on training new hierarchical VAE models for
heterogeneous mixed-type data with HMC. Our models can be used for missing data
imputation and for supervised learning with missing data. We also present a sampling-
based framework that allows our models to perform accurate sequential active information
acquisition.

This chapter is organized as follows: in Section 5.1 we revise alternative methods
for dealing with incomplete data using VAEs, recent hierarchical VAEs, Hamiltonian
Monte Carlo, and the task of Active Feature Acquisition. The HH-VAEM model, all its
components, its optimization algorithm and computational cost are described in Section
5.2. Our proposed sampling-based active learning algorithm is presented in Section 5.3.
The findings described in this chapter were presented as a paper in the main track of the
NeurIPS22 conference (Peis et al., 2022).

5.1. Related work

5.1.1. VAEs for mixed-type incomplete data

Variational Autoencoders (Kingma and Welling, 2013; Rezende et al., 2014) are deep
generative models that make use of encoder and decoder networks for mapping data into a
latent Gaussian distribution, and reconstructing the latent codes into the original observa-
tional space, respectively. The parameters of these networks are trained using amortized
Variational Inference (Zhang et al., 2018; Cremer et al., 2018) optimizing a lower bound

(ELBO) on the log evidence: Eqz(z|x) log pθ(x,z)
qψ(z|x) , where the generative model pθ(x, z) can

be expressed in terms of the likelihood pθ(x|z) and the prior p(z). In mixed-type data, the
vector x is composed by data from different types: real, positive real, categorical, binary,
etc. A naive approach is to consider a factorized decoder using different likelihood contri-
butions pθ(x|z) =

∏
d pθ(xd|z) (Nazabal et al., 2020; Barrejón et al., 2021). Nonetheless,

the problem of handling unbalanced likelihoods leads to the domination of some dimen-
sions during the optimization process. In (Ma et al., 2020), authors propose a solution
using a set of marginal VAEs that encode each feature into a Gaussian uni-dimensional
space, and a dependency VAE that captures the inter-dimensional dependencies more
effectively using balanced Gaussian likelihoods.

By marginalizing each dimension of the decoder, incomplete data can be easily handled
by dividing the vector x into the observed xO and unobserved xU parts. This methodol-
ogy is completely valid when using the missing-at-random (MAR) assumption (Little and
Rubin, 2019), i.e. assuming the missing mechanism is independent of the missing values.
In this work, the same assumption is adopted. As proposed in (Nazabal et al., 2020) and
(Mattei and Frellsen, 2019), the ELBO objective is transformed into a lower bound on
the observed data, and the unobserved data is replaced with zeros.

5.1.2. Hierarchical VAEs

Hierarchical models have been successfully employed in deep generative modeling,
(Bengio et al., 2009; Salakhutdinov and Hinton, 2009; Salakhutdinov, 2015). In VAEs,
defining a hierarchical latent space for VAEs can be straightforward. Nevertheless, poten-
tial pitfalls require special attention. Concretely, if the decoder is powerful enough, the
model tends to uniquely use the shallowest layers, ignoring the deepest ones and falling
into the well-known problem of posterior collapse (Wang and Cunningham, 2020; Razavi
et al., 2019a; Maaløe et al., 2019). In the last few years, several works have investigated
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possible hierarchical structures for VAEs. In (Sønderby et al., 2016), a bottom-up deter-
ministic path is used along with a top-down inference path that shares parameters with
the top-down structure of the generative model. In (Maaløe et al., 2019), the authors
use a bidirectional stochastic inference path. More recently, (Vahdat and Kautz, 2020)
or (Child, 2020) have adapted these architectures to complex datasets and high quality
images. Possibly motivated by the residual connections in (Kingma et al., 2016), all these
works use a shared path between recognition and generative models that helps in tying
the divergences between approximations and priors in the ELBO.

5.1.3. Hamiltonian Monte Carlo

HMC (Duane et al., 1987; Neal et al., 2011; Betancourt, 2017) is a particularly effective
MCMC algorithm for sampling from a target distribution p(z) = 1

Z p
∗(z) where Z is

the normalization constant and z is a d-dimensional vector. By augmenting this model
to p(r, z) = N (r; 0,M)p(z), and denoting r as the momentum variable with diagonal
covariance matrix M , with the same dimensionality as z, HMC samples are obtained
from the distribution by simulating the time-evolution of a fictitious physical system.

The algorithm starts by firstly sampling z and r from an initial proposal and the
momentum distribution, respectively. Chains with length T are built by recurrently
proposing and accepting new states. To propose a new state, the Hamiltonian dynamics
are simulated using a symplectic integrator, Leapfrog being the most common choice.
The following updates are repeated for l = 1 : LF steps:

rl+ 1
2

= rl +
1

2
φ �∇zl log p∗(zl) ,

zl+1 = zl + rl+ 1
2
� φ � 1

M
,

rl+1 = rl+ 1
2

+
1

2
φ �∇zl+1

log p∗(zl+1),

(5.1)

where � refers to the Hadamard product, and φ is the step size hyperparameter. Although
it is typically defined as a scalar for simplicity, a d-dimensional vector can be considered
to apply different step sizes per dimension, or further, as considered in this work, a T × d
matrix to apply different steps per each proposal of the chain. The new proposal (z′, r′)
is accepted with probability min [1, exp(−H(z′, r′) +H(z, r))], where

H(z, r) = − log p∗(z) +
1

2
rTM−1r. (5.2)

For the consecutive T proposals, a new momentum r is resampled and the updates of
(5.1) are repeated for LF steps to update the state if (z′, r′) is accepted.

5.1.4. Active Feature Acquisition

Among all the Active Learning techniques, Active Feature Acquisition (Melville et al.,
2004; Saar-Tsechansky et al., 2009; Thahir et al., 2012; Huang et al., 2018) is of special
interest in cost-sensitive applications for modeling a trade-off between the improvement
of predictions and the cost of acquiring new data at the feature level. Several works in the
recent literature have studied methods for performing the task of sequentially acquiring
high-value information by selecting features that maximize an information theoretical
reward function and enhance the accuracy of the predictions. This task is denoted by
SAIA (Sequential Active Information Acquisition). In (Ma et al., 2018), an efficient
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(a) The HH-VAEM model (b) HMC sampling

Figure 5.1: The HH-VAEM model (a). Illustrative example (b): samples ε(T ) obtained
with HMC (orange) following the true posterior p(ε|xO,yO) (green) using the Gaussian
distribution given by the encoder q(0)(ε|xO,yO) (blue) as the initial proposal, with latent
dimension M = 2.

method is proposed for approximating a non-tractable reward by using the encoder of a
VAE that handles missing data. In (Ma et al., 2020) they extend this method for handling
mixed-type data. Both works estimate the reward by relying on Gaussian approximations
given by the encoder networks.

5.2. Hamiltonian Hierarchical VAE for Mixed-type incom-
plete data

The HH-VAEM model (Figure 5.1 (a)) is a Hierarchical VAE for mixed-type, in-
complete data that incorporates HMC with automatic hyper-parameter optimization for
sampling from the posterior of the latent variables. In a first stage, the mixed-type data
is encoded into marginal Gaussian posterior distributions as given by univariate VAEs
fitted to each data dimension. In a second stage, a hierarchical structure captures the
dependencies among the standarized, homogeneous dimensions with well-balanced Gaus-
sian likelihoods. The model is trained using samples from the posterior of the hierarchical
latent variables by means of HMC, whilst the HMC hyper-parameters are automatically
tuned. A more detailed description is provided in the following subsections.

5.2.1. Notation

The model generates both data x ∈ RD and output y ∈ RP , where each of these
variables is divided into observed parts xO, yO and unobserved parts xU , yU . Each
dimension of x is denoted by xd. A training set is composed of N observations as tuples

(x
(n)
O ,y

(n)
O ). For ease of notation, we omit the observation index n, and the objectives
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are presented for a single observation. The dependency latent space is composed of L
latent variables [ε1, ..., εL], with εl ∈ Rml . The dimension of the joint latent distribution
is
∑
lml = M . In the marginal VAEs, the latent variables zd are unidimensional.

5.2.2. Handling heterogeneous incomplete data

Following the strategy proposed by (Ma et al., 2020), we perform a two-staged ap-
proach for handling heterogeneous data. The marginal distribution of each feature pθd(xd)
is modeled by a one-dimensional VAE. First, the D marginal VAEs are trained indepen-
dently by maximizing the marginal ELBO over observed points

Ld(xd; {θd, γd}) = 1(xd ∈ xO)Eqγd (zd|xd) log
pθd(xd, zd)

qγd(zd|xd)
, (5.3)

where 1(xd ∈ xO) is an indicator function that activates the ELBO when the feature is
observed. Under the missing-at-random assumption, which is the one considered in this
work, (5.3) leads to a lower bound on observed data likelihoods. Second, a dependency
VAE encodes a vector z with the concatenated samples from the marginal posteriors
qγd(zd|xd) into the global latent variable h, using zero-filling for the unobserved variables.
By using this approach, z is now homogeneous and can then be easily modeled using a
standard Gaussian decoder. By contrast, other works (Nazabal et al., 2020; Eduardo
et al., 2020) directly operate with different decoding likelihoods per data type. This
approach often leads to having very different magnitudes in the ELBO and may reduce
learning efficiency. The ELBO for the second stage dependency VAE is

L(xO,yO; {θ, ψ}) = Eqψ
[
log

pθ(zO,yO, ε)

qψ(ε|zO,xO,yO)

]
(5.4)

where ε = {ε1, ..., εL} is a set of reparameterized hierarchical latent variables. Further
details on the design of the hierarchical dependency VAE are provided below.

5.2.3. Predictive enhancement

The combination of generative and discriminative models is an effective well-studied
strategy for dealing with predictive models under missing data (Tresp et al., 1993; Ghahra-
mani and Jordan, 1995). In (Ghahramani and Jordan, 1995), they model p(x) for im-
puting missing data using a Gaussian Mixture Model. In a deep learning context, recent
supervised VAE models have revisited this combination (Śmieja et al., 2018; Ipsen et al.,
2020) or used factorisations of type p(z)p(x|z)p(y|z) (Joy et al., 2021) to learn meaning-
ful representations. In (Li et al., 2019) the authors propose a deep generative model with
factorisation p(z)p(x|z)p(y|x, z) for detecting adversarial attacks.

With the aim at reinforcing the prediction of the variable of interest, we turn into
a supervised model by including a separate predictor for pθy (y|x̂,h), apart from the
decoder pθz (z|h). The vector x̂ = (xi ∈ xO, x̂j ∈ xU ) includes the observed part and
imputation of the missing variables x̂j by decoding the latent h into z using p(z|h1), and
each dimension zj ∈ z into x̂j using p(xj |zj). The predictor parameters θy are optimized
along with the decoder parameters θz.

5.2.4. Hierarchical reparameterized latent space

A hierarchical structure over the latent space h = {h1, ...,hL} enriches the prior
assumptions and permits a flexible generation of data in a more natural fashion. Nev-
ertheless, as stated in (Betancourt, 2017; Betancourt and Girolami, 2015), HMC can be
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pathological when used for sampling from hierarchical densities, where the magnitude of
autoregressive variations increase with the depth. For approximating the Hamiltonian
dynamics, inside each Leapfrog integrator step, gradients ∇h1:L

log p∗(h1:L) are required.
Due to the strong curvature regions, huge norm of high-order derivatives are backpropa-
gated and might eventually explode, ending in overflow issues (Figure 35 in (Betancourt
and Girolami, 2015)).

If we were to run our HMC method over the hierarchical variables without any repa-
rameterization (Figure 5.4a), by the time the states reached the aforementioned problem-
atic regions, the integrator would diverge and we would experience the aforementioned
overflow problems. By rejecting these problematic states, chains would get stuck close
to the proposal and the hierarchical density would not be properly explored (concluding
that HMC would not improve the Gaussian proposal). To give an example, in (Vahdat
and Kautz, 2020), the AR path p(hl|h<l) would provoke instabilities inside the HMC
integrator due to huge gradients in ∇h1:L

log p∗(h1:L).
We successfully solved this issue by introducing a hierarchical reparameterization tech-

nique. The representation at each layer is reparameterized from variable εl with standard
Gaussian prior p(εl)

hl = fµl(hl+1) + fσl(hl+1) · εl, (5.5)

where the functions fµl(hl+1) and fσl(hl+1) are applied by NNs with parameters θl =
{θµl , θσl}. The result is equivalent as learning the mean and covariance of autoregres-
sive variables (see Figure 5.4 for illustrative details). However, thanks to this trick, we
relax the dependencies among the latent variables, resulting in a smoother joint poste-
rior density p(ε|xO,yO). Performing the inference over ε = {ε1, ..., εL} leads to a better
posed basis for running our HMC optimization, detailed in Section 5.2.5, and avoids the
necessity of employing more advanced HMC samplers like (Girolami and Calderhead,
2011; Betancourt and Girolami, 2015). We include further details on the pathological
behavior and demonstration of the effectiveness of our solution in Appendix B.1.2. Pro-
vided the promising results we obtain in Section 5.4, we propose our reparameterization
trick as a novel contribution for solving the pathological behavior of HMC combined with
hierarchical VAEs.

For the sake of simplicity, we name the generative parameters as θ = {θz, θy, θ1, ..., θL}.
The dependency ELBO under this hierarchical reparameterized model becomes

LV I(xO,yO; {θ, ψ}) = Eqψ
[
log

pθ(zO,yO, ε)

qψ(ε|zO,xO,yO)

]
=

Eqψ [log pθ(zO|h1) + log pθ(yO|x̂,h1)]−
L∑
l=1

DKL (qψ(εl|xO,yO)||p(εl)) .
(5.6)

We name rl the hidden representation at each layer, and defining r0 = {xO,yO}, we
employ NNs with parameters ψrl for computing rl = fr(rl−1). These vectors are mapped
into the parameters of the variational posterior qψl(εl|xO,yO), using NNs for computing
the mean as gµl(rl) and the covariance as gσl(rl), with parameters ψµl and ψσl . With
compactness purposes, we will denote the encoder parameters as ψ = {ψ1, ..., ψL}, with
ψl = {ψrl , ψµl , ψσl}.

Balancing the KLs

Following (Vahdat and Kautz, 2020), we define a short initial warming stage (10% of
the total training steps) during the optimization where the KLs for the different layers are
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balanced according to their magnitude and the corresponding latent dimension, preventing
the model for falling into posterior collapse by ignoring deepest layers. A factor is applied
to each KL, following

γl =
dl Ex∼B [KL(q(εl|x)||p(ε))]∑L
i=1 di Ex∼B [KL(q(εi|x)||p(ε))]

. (5.7)

The factors penalises the fact that a layer might be ignored by making the KL smaller
when its magnitude is small compared to the rest layers.

5.2.5. HMC over the hierarchical density

In recent works, HMC has been combined with deep generative models for improving
the inference of the latent variables by obtaining better samples from the posterior (Hoff-
man, 2017; Caterini et al., 2018). In this work, we propose to transcend these previous
approaches and build a generalized method for sampling from complicated, hierarchical
latent structures composed by several layers. Inspired by (Campbell et al., 2021) and their
method for sampling from the posterior within a vanilla VAE framework while tuning the
HMC hyperparameters, we follow a procedure for training the dependency model where
i) during a pre-training stage, the encoder and decoder are optimized using standard VI
and the ELBO from (5.6), and ii) using the pre-trained encoder for starting from a good
proposal (Hoffman, 2017), HMC samples are obtained to follow the true posterior and
jointly optimize the generative model and the HMC hyperparameters. In Figure 5.1 (b)
we include an illustrative example.

We denote by q
(T )
φ (ε|zO,xO,yO) the implicit distribution for the posterior after T

HMC steps. The hyper-parameters of HMC are named φ, a T × d matrix containing
the step sizes for each dimension at each step of the chain. Within this perspective, the
hyper-parameters can be optimized using variational inference by maximizing the ELBO

E
q
(T )
φ (ε)

[log p(zO,yO, ε)] +H[q
(T )
φ (ε|xO,yO)], (5.8)

where the first part is the HMC objective, and can be easily estimated via Monte Carlo

LHMC(zO,yO; {θ, ψ, φ}) = E
q
(T )
φ (ε)

[log pθ(zO|h1) + log pθ(yO|x̂,h1) +

L∑
l=1

p(ε
(T )
l )].

(5.9)

Nevertheless, the entropy term H[q
(T )
φ (ε|xO,yO)] in Equation (5.8) is not tractable since

we are not able to explicitly evaluate the distribution q
(T )
φ (ε|xO,yO). Although optimizing

the first term might result in a well-posed algorithm, this would bring consequences that
must be considered. Namely, without a proper regularization term, and in case the initial

proposal q
(T )
φ (ε|xO,yO) is concentrated in high density regions, the chains would barely

move from the initial state and only these regions with high density would be explored (see
Section 5.4.6 and Appendix B.1.2 for illustrative details). To cope with this problem, we
define an inflation parameter s to increase the variance of the proposal qφ(ε|zO,xO,yO)

given by the Gaussian encoder, ending in the proposal
∏L
l=1N (gµl(rl), sl·gσl(rl)). Whilst

in (Campbell et al., 2021) the authors define this parameter as a scalar factor applied to
all the latent dimensions, in our work, we extend this to apply a different inflation factor
at each latent level s = {s1, ..., sL}. In order to tune these inflations we ensure a wider
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coverage of the density by minimizing the Sliced Kernelized Stein Discrepancy (SKSD)
(Gong et al., 2020)

LSKSD(xO,yO; s) = SKSD
(
q
(T )
φ (ε|zO,xO,yO; s), p(ε|zO,xO,yO)

)
, (5.10)

which fits perfectly our requirements, since only requires samples from HMC and
gradients ∇ε log p(zO,yO, ε) for measuring a discrepancy between the implicit and the
true posterior. Further, the SKSD performs better than other discrepancies like (Liu
et al., 2016) in high dimensional latent spaces.

We provide in Section 5.4.6 a toy demonstration on the efficacy of the HMC optimiza-
tion, and in Appendix B.1.2 a demonstration of the optimization convergence.

5.2.6. HH-VAEM optimization

The optimization of the HH-VAEM is divided into three stages. In a first stage,
we train one independent marginal VAE per dimension. In a second stage, the de-
pendency VAE is trained, using as inputs the concatenation of the encoded dimensions
z = {z1, ..., zD} and the target y. Finally, in a third stage, the HMC hyperparameters,
the decoder and the predictor are tuned using the HMC objective, the inflation parameter
is trained using the SKSD discrepancy, and the encoder is trained used the ELBO. The
pseudocode for HH-VAEM training is shown in Algorithm 1.

5.2.7. Computational cost

In a VAE, the data is fed to the encoder with aim at obtaining the variational param-
eters for sampling from the Gaussian approximated posterior. In our method, the data
is similarly encoded to obtain the initial Gaussian proposal q(0), and the samples from
this distribution are updated for T cycles to obtain the implicit q(T ) using HMC. Within
each of these iterations, L leapfrog steps (5.1) are executed. For each of these steps, the
computation of the gradients ∇εl log p(z,y, εl) and ∇εl+1

log p(z,y, εl+1) is required. To
obtain these gradients, we need to i) compute the parameters of the likelihood p(z,y|ε)
that are given by the decoder (p(z|h1)) and predictor (p(y|x̂,h1)), ii) evaluate the like-
lihood and iii) perform the automatic differentiation. Thus, for running our method, an
additional cost from both decoding and performing differentiation a total of 2TL times
is introduced.

By jointly optimizing the HMC hyperparameters we are able to achieve faster conver-
gence with smaller lengths. To reduce the computational cost, we optimize the hyperpa-
rameters in a final training stage, since convergence is rapidly achieved (as demonstrated
empirically in Section 5.4.6). At test, samples from the Gaussian q(0) (faster and cheaper),
or from HMC q(T ) (slower and better) can be used to fit computational constraints.
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Algorithm 1 Training algorithm for HH-VAEM

Input: data
(
x
(1:N)
O ,y

(1:N)
O

)
, steps: Td, TV I , THMC

Parameters: γ, θ, ψ, φ, s
Stage 1: marginal VAEs
for d = 1 to D do

Initialize marginal VAE {θd, γd}
for t = 1 to Td do
γt+1
d , θt+1

d ← Adamγtd,θ
t
d
(Ld)

end for
end for
Stage 2: dependency VAE
for t = 1 to TV AE do
θt+1, ψt+1 ← Adamθt,ψt(LV I)

end for
Stage 3: Jointly optimizing VAE + HMC
for t = 1 to THMC do
ψt+1 ← Adamψt(LV I)
θt+1, φt+1 ← Adamθt,φt(LHMC)
st+1 ← Adamst(LSKSD)

end for

5.3. Sampling-based Active Learning

Considering that the input data are tuples of observed and missing features {xO,xU},
our Active Learning framework follows (Ma et al., 2018; 2020) and determines which
feature xi ∈ xU will enhance the prediction of the target y the most for a particular
xO. Concretely, in a Sequential Active Information Acquisition (SAIA) scenario, this
decision is taken sequentially to optimally increase knowledge and accurately predict y.
From a information theoretical perspective, this task can be performed recurrently by
maximizing a reward function R at each step d. This reward might represent abstract
quantities of interest like the cost or benefit of acquiring xi (depending on the sign). In
Bayesian experimental analysis, R is the expected gain of information (Lindley, 1956).
Following (Bernardo, 1979), we can define it as

R(i,xO) = Ep(xi|xO)DKL (p(y|xi,xO)p(y|xO)) , (5.11)

where i is the index of each unobserved feature. Intuitively, this quantity can be inter-
preted as the expected change in the predictive distribution when xi is observed. The
reward needs to be estimated via Monte Carlo by sampling from p(xi|xO). With a robust
generative model that handles missing data like HH-VAEM, these samples are easily ob-
tained: first, using HMC, we sample ε(T ) from p(ε|xO). Second, we decode these samples
to obtain xi from p(z|h1) and p(xi|zd). Nonetheless, the reward defined in (5.11) is in-
tractable since both p(y|xi) and p(y|xi,xO) are intractable: computing them requires to
integrate out the latent variables. This motivates the authors of (Ma et al., 2018; 2020)
to present a transformation of the reward for being computed in the latent space using
the encoder network. Although they prove that this transformation effectively provides
a good estimation in several datasets, we demonstrate that for low dimensional targets
(commonly one or two dimensions), an approximation using histograms is more effective.
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Bank Insurance Avocado Naval Yatch Diabetes Concrete Wine Energy Boston

VAEM 2.84± 0.07 1.81± 0.03 1.89± 0.01 0.55± 0.05 3.15± 0.28 2.78± 0.16 2.45± 0.26 3.01± 0.61 2.09± 0.10 2.01± 0.23
MIWAEM 2.74± 0.05 1.88± 0.04 1.92± 0.04 0.57± 0.03 2.66± 0.11 2.55± 0.09 2.34± 0.51 2.76± 0.48 2.06± 0.14 1.94± 0.23
H-VAEM 2.82± 0.06 1.80± 0.04 1.89± 0.01 0.48± 0.06 3.06± 0.31 2.74± 0.09 2.42± 0.21 2.85± 0.56 1.72± 0.11 1.89± 0.24

HMC-VAEM 2.69± 0.05 1.77± 0.06 1.89± 0.02 0.49± 0.07 2.21± 0.24 2.72± 0.20 2.28± 0.29 2.83± 0.46 1.73± 0.05 1.83± 0.16
HH-VAEM 2.63± 0.04 1.75± 0.03 1.88± 0.05 0.40± 0.05 2.47± 0.27 2.54± 0.13 2.28± 0.09 1.90± 0.17 1.71± 0.04 1.83± 0.11

Table 5.1: Test NLL of the unobserved features for our model and baselines.

Bank Insurance Avocado Naval Yatch Diabetes Concrete Wine Energy Boston

VAEM 0.56± 0.06 1.20± 0.03 1.18± 0.02 2.69± 0.01 0.61± 0.02 1.59± 0.19 1.07± 0.09 0.28± 0.09 0.61± 0.14 0.85± 0.21
MIWAEM 0.51± 0.03 1.15± 0.03 1.15± 0.03 2.70± 0.01 0.60± 0.03 1.36± 0.10 0.95± 0.22 0.28± 0.13 0.54± 0.12 0.80± 0.21
H-VAEM 0.50± 0.03 1.06± 0.02 1.18± 0.02 2.68± 0.01 0.60± 0.02 1.71± 0.14 1.02± 0.09 0.26± 0.11 0.46± 0.14 0.90± 0.22

HMC-VAEM 0.52± 0.02 1.00± 0.03 1.12± 0.03 2.71± 0.01 0.52± 0.15 1.55± 0.29 0.95± 0.26 0.28± 0.09 0.41± 0.07 0.71± 0.13
HH-VAEM 0.49± 0.03 0.93± 0.06 1.10± 0.01 2.62± 0.01 0.56± 0.02 1.38± 0.18 0.95± 0.08 0.20± 0.04 0.32± 0.05 0.55± 0.04

Table 5.2: Test NLL of the predicted target for our model and baselines.

Concretely, the reward in (5.11) can be rewritten as

DKL [p(y, xi|xO)||p(y|xO)p(xi|xO)] = I(y;xi |xO), (5.12)

While a set of advanced non-parametric estimators of the mutual information are available
(Kraskov et al., 2004; Ross, 2014), many are not easilly adapted for parallelization. We
demonstrate that the simplest one,

Î(y;xi |xO) ≈
∑
ij

p(i, j) log
p(i, j)

px(i)py(j)
, (5.13)

based on binning the xi and y domains, is effective and easy to parallelize. In the equation,
px(i) = nx(i)/N , py(j) = ny(j)/N and p(i, j) = n(i, j)/N are the relative frequencies
that approximate p(x), p(y) and p(x, y) for each bin. Thus, nx(i), ny(j) and n(i, j) are
the number of samples inside each interval. The number of bins defines the width of
uniformly distributed intervals over xd and y supports. Since this estimator is sampling-
based, under certain conditions (namely, if all densities exist as proper functions), (5.13)
indeed converges to I(y;xi |xO) if we first let the number of samples N → ∞ (Kraskov
et al., 2004).

5.4. Experiments

The evaluation of the HH-VAEM model is organized into three quantitative experi-
ments and one qualitative experiment. The ablation study includes the validation of our
proposed HMC-based, hierarchical model with respect to the Gaussian and one-layered
alternatives. Namely, the comparison is performed with the following baseline models:

VAEM : 1 layer, Gaussian-based VAEM (Ma et al., 2020) (without including the
Partial VAE).

MIWAEM : 1 layer, Gaussian-based, importance weighted IWAEM (VAEM + IWAE
(Mattei and Frellsen, 2019)).

H-VAEM : 2 layers, Gaussian-based VAEM.

HMC-VAEM : 1 layer, HMC-based (with our optimization method) VAEM.

For all the models, we manually introduce missing data in the training set by randomly
setting per data point a feature as missing with a probability sampled uniformly in the
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interval [0.01, 0.99] within each batch. Both the input data x and the target y can be
missing. For the test set, a fixed probability of 0.5 leads to about half of the input data
being observed, whilst the target is completely unobserved.

For the quantitative experiments, a total of 10 UCI datasets (Dua et al., 2017) that in-
clude mixed-type data are employed for the evaluation. We include both MNIST (LeCun,
1998) and Fashion-MNIST (Xiao et al., 2017) datasets for evaluating our model in higher
dimensional observational and latent spaces and bigger architectures (3 layered convolu-
tional nets for encoder/decoder). For the qualitative results, we evaluate our model in
the image inpainting task on MNIST and CelebA (Liu et al., 2015). For the three image
datasets, the marginal VAEs are not included and the dependency VAE is fed directly
with the Bernoulli-distributed pixels. We name this model HH-VAE, and similarly, the
baselines are renamed as VAE, MIWAE, HMC-VAE and H-VAE. Extended experiments
and validations are provided in the Appendix. The source code for reproducing our work
is available at https://github.com/ipeis/HH-VAEM.

(a) Autoregressive

(b) Reparameteriza-
tion

Figure 5.4: AR (a) vs
reparameterized (b).

VAE MIWAE H-VAE HMC-VAE HH-VAE

MNIST 0.124± 0.001 0.121± 0.001 0.119± 0.001 0.101± 0.004 0.094± 0.003
F-MNIST 0.162± 0.002 0.160± 0.002 0.156± 0.002 0.150± 0.002 0.144± 0.002

Table 5.3: Test NLL of the unobserved features for the MNIST
datasets.

VAE MIWAE H-VAE HMC-VAE HH-VAE

MNIST 0.153± 0.009 0.151± 0.007 0.146± 0.006 0.067± 0.007 0.056± 0.019
F-MNIST 0.501± 0.012 0.496± 0.008 0.494± 0.007 0.357± 0.060 0.337± 0.069

Table 5.4: Test NLL of the predicted target for the MNIST
datasets.

VAE MIWAE H-VAE HMC-VAE HH-VAE

MNIST 0.953± 0.004 0.953± 0.003 0.953± 0.003 0.978± 0.003 0.981± 0.005
F-MNIST 0.824± 0.005 0.824± 0.004 0.824± 0.004 0.869± 0.015 0.876± 0.017

Table 5.5: Test accuracy of the predicted digits for the MNIST
datasets.

5.4.1. Experimental setup

Apart from the MNIST, Fashion-MNIST and CelebA datasets, a total of 10 UCI
datasets have been employed in this work including: Bank Marketing, Insurance Company
Benchmark, Avocado sales, Naval Propulsion Plants, Yatch Hydrodynamics, Diabetes,
Boston Housing, Wines, Energy efficiency and Bank Marketing.

The networks for the encoder of the model with the MNIST datasets are 2 layered
Deep CNNs with {16, 32, 32} output channels, kernel size 5, stride 2 and padding 2.
For the experiments with CelebA, we use 5 layered Deep CNNs with {32, 32, 64, 64,
512} output channels, kernel size 4, stride 2 and padding 1, followed by batch norm
layers. They are followed by MLPs with 512 hidden units for obtaining the variational
parameters for each layer. The decoder that obtains pθ(x|h1) is the symmetric CNN. All
the NNs employed in the models trained with UCI datasets are one single layer MLPs
with 256 hidden units. The noise variance for Gaussian likelihoods is set up to 0.1.

We employ learning rates of 1×10−3 for the models with MLP networks and 2×10−4

for the convolutional models. For the inflation parameter s, we increase to 1 × 10−2

for a faster convergence. A batch size of 100 is used for all the models except for
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Yatch and Wine dataset, where we use 20 samples per batch. The number of train-
ing steps is 2 × 104 for Boston, Energy, Wine, Yatch, Concrete, Diabetes and Yatch,
and 5× 104 for Naval, Avocado, Bank, and Insurance. For MNIST and Fashion-MNIST,
we have 1 × 105 training steps. For CelebA, we use 1, 5 × 105 training steps. For the
marginal VAEs stage, we employ 1 × 103 training steps. The dimension of the latent
variables is [d1 = 10, d2 = 5] for Boston, Energy, Wine, Naval Avocado, Bank and Insur-
ance [d1 = 4, d2 = 2] for Concrete, Yatch and Diabetes, [d1 = 20, d2 = 10] for MNIST and
Fashion-MNIST, and [d1 = 32, d2 = 16] for CelebA.

We use LF = 5 Leapfrog steps in all cases, chains of T = 10 for Boston, Energy, Wine,
Naval Avocado, Bank, Insurance, MNIST, Fashion-MNIST and CelebA, and T = 5 for
Concrete, Yatch and Diabetes. The SKSD function is estimated using 30 HMC samples.

For the MNIST and CelebA datasets, the use of Nvidia P100 GPU with Pascal ar-
chitecture sped up the training with the CNN-based architecture. For the UCI datasets,
due to the use of small networks, the differences when using CPU or GPU are almost
imperceptible.

5.4.2. Mixed type conditional data imputation

In order to evaluate the performance of the model in terms of data imputation, we
opt by computing the negative log likelihood of the unobserved features. We make use of
the Monte Carlo approximation

log p(xU |xO) ≈ logEε∼q(T )(ε|xO) [p(xU |ε)] ≈ log
1

k

k∑
i

p(xU |εi), (5.14)

which is averaged over features in order to compare the imputation performance with
the baselines. Additionally, we include in Section B.1.5 similar results averaging each
of the considered likelihoods. Results on the 10 UCI datasets and the MNIST datasets
are included in Tables 5.1 and 5.3, showing that for most of the datasets, incremental
improvement is obtained: VAEM < H-VAEM < HMC-VAEM < HH-VAEM. Extended
results with the imputation error, included in Appendix B.1.3, corroborate this.

5.4.3. Target prediction

For this experiment, we compute the negative log likelihood of the target under the
predictive distribution using the same procedure as in the previous section. Results
included in Tables 5.2 and 5.4 show the same incremental improvement in the prediction
task.

5.4.4. Sequential active information acquisition (SAIA)

In this experiment, our HH-VAEM model and our acquisition method are evaluated in
a SAIA task. Starting by predicting from completely unobserved inputs, at each step, the
missing feature that maximizes the reward is acquired. Figure 5.5 shows the error curves
for the UCI datasets. Blue lines correspond to the Gaussian-based reward proposed by
(Ma et al., 2020). Orange lines are our sampling-based reward in a VAEM framework.
Green lines correspond to HH-VAEM with our reward. In most of the cases, our model
and acquisition method obtains lower errors and faster discovery of information.
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Figure 5.5: SAIA curves. Horizontal axis shows number of discovered features. Vertical
axis is RMSE.

5.4.5. Conditional image inpainting

We include in this experiment qualitative results when comparing our model with the
baselines on the image conditional inpainting task. We include results for MNIST and
CelebA in Figure 5.6 (a) and (b), respectively, that show the superiority of our method.
First, the hierarchical Gaussian model (fourth row) considerably improves the one-layered
Gaussian alternative. Second, the HMC-based methods (two last rows) vastly improve
the Gaussian methods. Third, in some specific cases, an extra improvement is added by
HH-VAE with respect to the one-layered HMC-based model (columns 2, 4, 8, 9, 11, 12
and 13 in Figure 5.6 (a) or columns 1, 2, 5 and 12 in (b)).

5.4.6. Efficacy of HMC optimization

We include in this experiment results that demonstrate the efficacy of training the
HMC hyperparameters using our proposed gradient-based strategy on 2D densities. In
Figure 5.7, each row correspond to a different example: first row is a wave density, second
row is a dual moon density. In the first column, the initial set up is showed, including the
density contour (dark blue), the initial Gaussian proposal contour (light blue) and samples
from HMC (green). In both cases, due to the tightness of the proposal, chains do not
properly explore the density and get stuck close the initial state. In the second column,
results after training HMC hyperparameters and the inflation parameter are included.
Again, in both cases, and more specially in the first one, the inflation of the horizontal
variance of the proposal successfully increases to better cover the surface, and final HMC
samples vastly improve the exploration. In the third column, the approximations of the
HMC objective, the SKSD discrepancy and the inflation parameters over the optimization
steps are included.

In Figure 5.8 (a), the mean acceptance rate of the HMC sampler over the training
steps and the step sizes (b) are included. The steps are initialized from U(0.05, 0.2). After
2× 103 steps, the mean acceptance rate converges to a value closer to p̄a = 0.65, which is
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(a) MNIST

(b) CelebA

Figure 5.6: Image conditional inpainting on MNIST (a) and CelebA (b). First row:
original images from the test set. Second row: input to the model, xO, with a black square
missing mask xU manually introduced. Third, fourth, fifth and sixth rows: imputed x̂U
for VAE, H-VAE, HMC-VAE and HH-VAE, our model, where x̂U is decoded from samples
of the approximate posterior (Gaussian for VAE and H-VAE, or HMC-based for HMC-
VAE and HH-VAE).

defined as the optimal desired acceptance probability (Neal et al., 2011). This empirical
result provides evidence that, apart from reducing the computational cost, reducing the
HMC training step to this value is sufficient for achieving convergence.

5.5. Conclusion

We presented HH-VAEM, to our knowledge, the first hierarchical VAE for mixed-type
incomplete data that uses HMC with automatic hyper-parameter tuning for improved
inference. We provide both quantitative and qualitative experiments that demonstrate
its superiority with respect the baselines in the tasks of missing data imputation and su-
pervised learning, placing HH-VAEM as a robust model for real-world datasets. Further,
we have developed a novel sampling-based technique for dynamic feature selection that
outperforms the Gaussian-based alternatives and results in an efficient method for active
learning in deep generative models.
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Figure 5.7: Toy example showing the efficacy of training HMC hyperpameters using our
method on two densities: wave (top row) with T = 5 and dual moon (bottom row) with
T = 10. Left column illustrates the non desired behavior when chains hardly explore the
density and stuck in a small region close to the mass of the tight Gaussian initial proposal
(light blue contour ellipses). Right column shows how optimizing the step sizes and the
inflation parameter leads to a vast improvement of the exploration. More specifically, (b)
justifies scaling each dimension of the target, since the inflation is bigger on the horizontal
axis.

(a) Mean acceptance rate p̄a (b) Step sizes

Figure 5.8: Evolution of mean acceptance rate p̄a (a) and step sizes (b) over the training
steps.
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CHAPTER 6

Conclusions and Future
Work

The preceding chapters have meticulously examined the two domains of study that have
been taken into account in this research. Chapters 2 and 3 laid the groundwork for

the contributions by reviewing the literature on Deep Generative Models from a broader
perspective and Variational Autoencoders from a more specific standpoint. In Chapter 4,
the initial primary contribution was put forth, consisting on the development of a novel
method for learning global meaningful representations in a fully unsupervised setting. In
Chapter 5, the second principal contribution was presented, which involved the creation
of a model with heightened expressiveness and superior inference performance, resulting
in more accurate acquisition of unobserved data. This final chapter summarizes the key
findings of the doctoral thesis, offering a comprehensive overview of the outcomes and an
extensive presentation of the principal points for future research development.

6.1. Summary of models and contributions

Variational Autoencoders are widely used and have achieved impressive results in
recent years. However, there is still room for methodological improvement. In this doc-
toral thesis, two critical issues were successfully addressed. One of them is the problem
of learning meaningful or disentangled representations, which has been previously tack-
led by incorporating additional information into the data with some semi-supervision or
adding new factors to the ELBO to assess the level of disentanglement. However, the
former unrealistically assumes the availability of additional information, and the latter
requires additional modifications of the objective, which departs from the pure theoretical
definitions of the ELBO. In contrast, the UG-VAE presented in this thesis demonstrates
that model design is a powerful technique for achieving meaningful latent representations
of the observed data. By designing a global encoder that allows for permutations, batches
of images can be compressed into a global latent representation. This global concept is
shared by a group of samples and induces the probabilities of a mixture model for the
prior of the local latent space, affecting every single sample differently. The experimental
results demonstrate that the model can effectively perform inference, allowing to split
global-local concepts within the set of two latent variables. The results provide evidence
of promising improvements in generation quality, diversity, interpretability of the learned
representations, domain alignment, and expressivity, highlighting the significance of this
contribution.

Overall, the principal contributions presented in Chapter 4 are:

To our knowledge, we propose the first deep generative model for generating groups
of samples with shared properties learned in a fully-unsupervised fashion, named
UG-VAE.
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We demonstrate that the information captured in the structured latent space of
UG-VAE is highly interpretable in comparison with other related methods, leading
to an improved disentanglement in both local and global spaces.

We demonstrate that, by simply training UG-VAE with minibatches of samples
from several datasets, the structured latent space aligns them and captures common
interpretable properties without any label or supervision.

We demonstrate that, although the training unsupervised, the global space is able
to effectively separate the global posterior of different groups when weak supervision
is included at test time for grouping observations with a given label or attribute.

The second part of the thesis focuses on solving different tasks using the same family
of models, namely missing data imputation and data acquisition. Both tasks are highly
dependent on the accuracy of the model’s posterior approximation, as predictive distribu-
tions are decoded from latent samples drawn from the learned posterior. To address this,
a powerful inference technique is presented that combines HMC and VAEs. Additionally,
to enable the model to learn from more complex datasets, a hierarchical structure of la-
tent variables is used, but this comes with the drawback of increasing the complexity of
the approximate inference in such a complicated posterior density. However, by propos-
ing an efficient reparameterization method and jointly tuning its hyperparameters, HMC
is successfully integrated into the Hierarchical VAE. The results, both qualitative and
quantitative, demonstrate the superiority of the hierarchical approach and HMC-based
inference in achieving superior performance in both imputation and acquisition tasks. In
addition, a new contribution is introduced that leverages the advantages of HH-VAEM in
sampling by proposing a sampling-based scheme for approximating the reward function
of acquiring unobserved features, leading to a considerable improvement over alternatives
as demonstrated in the SAIA experiments.

To conclude, the main contributions presented in Chapter 5 are as follows:

We present HH-VAEM, a deep hierarchical model for handling mixed-type incom-
plete data that uses HMC with automatic hyper-parameter tuning for outperform-
ing amortized variational inference by generating low bias samples from the true
posterior.

We propose a sampling-based strategy for missing feature acquisition that benefits
from the improved inference of HH-VAEM. By using histograms to estimate the
mutual information, this strategy achieves lower bias than other Gaussian-based
alternatives.

We exhaustively evaluate HH-VAEM in the tasks of 1) missing data imputation,
2) supervised learning with missing data and 3) information acquisition with our
sampling-based strategy. In all cases we report significant gains with respect to
baselines.

6.2. Future research

For both two contributions, the following potential lines of future research can be
considered. They are classified into technical or applied research in different sections.
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6.2.1. Technical research

Technical research often entails developing innovative modeling strategies, which may
involve combining insights from the presented studies in chapters 4 and 5 or pursuing the
natural progression of each individual contribution.

Global factors in sequential data

One of the research projects that preceeded the present doctoral thesis was focused
in developing deep neural models for sequential data (Peis et al., 2019). This line could
leverage the findings of this doctoral thesis by considering entire sequences as local data-
points. Finding interpretable global patterns shared among sequences could help in better
describing sequencial data from multiple sources, like Electronical Health Records from a
patient population, audio recordings from different speakers, or stock prices from differ-
ent companies, to list some examples. A comparative migh be the way Latent Dirichlet
Allocation (LDA, (Blei et al., 2003)) finds global topics in a text corpus within a unsuper-
vised setting. In the UG-VAE setting, both local discrete “topics”, and global continuous
generative factors could be captured. Recent works like (Li and Mandt, 2018) have shown
promising results in disentangling sequences. Their model splits into static-dynamic vari-
ations, or latent time-dependent features (dynamics) from features which are preserved
over time (content). Others build models for learning disentangled representations in mu-
sic data (Yang et al., 2019; Luo et al., 2020), video (Vowels et al., 2021; Albarracin and
Rivera, 2022), sequence-to-sequence (Yang et al., 2022), audio synthesis (Melechovsky
et al., 2023), or sequential recommenders.

Hierarchical latent spaces and global factors

In chapter 5, Hierarchical VAEs were considered as a robust model that allows for
increased flexibility of the prior, inducing a flow of information from more abstract or
general concepts, to more specific features. However, all this presented insights were
modeled independently for each datapoint, i.e. they only represent local variations. If
findings from UG-VAE (Peis et al., 2023) were combined with this hierarchical setting,
it might be possible to find global properties at different levels of abstraction. Math-
ematically, this disentanglement could be achieved by designing two latent hierarchies
β = {β1, ...βLβ} at the global level and z = {z1, ...,zLz} at the local level. By doing this,
both the specific and abstract properties could be organized hierarchically. For instance,
these two levels of abstraction could refer to style-content in models like (Jing et al., 2019;
Bouchacourt et al., 2018; Esmaeili et al., 2019), or different domains in domain alignment
(Ilse et al., 2020; Liu et al., 2021b; Heinze-Deml and Meinshausen, 2021).

Domain alignment with global factors

As empirically demonstrated in section 4.3.2, the UG-VAE model allows for efficiently
handling domain alignment in an unsupervised setting. Other wors have proposed similar
design strategies for modeling data from different domains, like (Ilse et al., 2020), where
three independent latent variables are combined to account for domain, class and residual
variation factors. More examples can be found in (Nguyen et al., 2021; Liu et al., 2021c).
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MCMC for enhancing disentanglement

In this thesis, MCMC methods for obtaining more accurate samples from the true pos-
terior in VAEs have been shown to be successful in the considered tasks, mainly: missing
data imputation, reconstruction and information acquisition (Peis et al., 2022). Another
research question arises when merging the two contributions: does the approximate in-
ference influence the quality of the disentanglement? Would MCMC methods improve
the interpretability of the learned latent space? For addressing these questions, the HMC
algorithm can be plugged to UG-VAE to analyze the latent space.

6.2.2. Applied research

Global factors in clinical data

The use of UG-VAE presents a promising avenue for learning meaningful representa-
tions of clinical data, with potential applications in the development of diagnostic tools,
disease stratification, and personalized treatments. Such applications could have a sub-
stantial impact, as the discovery of global factors of variation in clinical populations can
be crucial for understanding disease progression and identifying effective interventions.
For example, in a previous contribution from the author of this thesis (Peis et al., 2020),
a Hierarchical Gaussian Process was used to model two levels of variation - patient-level
and population-level - in activity-related measures from depressed inpatients, with the
goal of predicting the discharge date. While this approach successfully differentiated the
two levels of variation, the use of UG-VAE could capture more complex patterns in a
similar way to previous studies (Couronné et al., 2021; Cetin et al., 2023). Furthermore,
by incorporating semi-supervision of the patient anonymized identification, as demon-
strated in (Bouchacourt et al., 2018), more robust disentanglement could be achieved.
Overall, the potential for UG-VAE to uncover hidden patterns in clinical data suggests
that further investigation is warranted.

Global factors in recommender systems

Recent studies have shown that Deep Learning methods have the potential to im-
prove the performance of Recommender Systems by learning representations of users and
items that capture complex patterns in user-item interactions (Deng et al., 2022; An-
tognini and Faltings, 2021; Ma et al., 2019b). Within this framework, UG-VAE could
be used to model dynamic user preferences over time, which could improve the accuracy
of personalized recommendations. Additionally, incorporating side information such as
user demographics or item features could further enhance the ability of UG-VAE to cap-
ture disentangled user-item interactions. Another potential direction is to explore the
interpretability of UG-VAE representations, as this could help users better understand
the reasons behind recommendations and improve trust in the system, or providers to
reasonate on user preferences. Finally, there is also potential for combining UG-VAE
with other machine learning techniques such as reinforcement learning or active learning
(like the proposed acquisition method in Peis et al. (2022)) to optimize recommendation
strategies.

Efficient clinical data acquisition

As briefly discussed in chapter 5, Active Learning (Lindley, 1956; MacKay, 1992) is a
type of Machine Learning in which an algorithm actively selects the most informative data
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points to learn from, instead of passively learning from a fixed dataset. This is achieved
by selecting data points for which the algorithm is uncertain or has low confidence in
its predictions, and requesting additional labels or annotations for those samples. This
approach can help reduce the amount of labeled data needed to train a model, and
improve its accuracy. Active Learning is particularly useful when labeling large datasets
is expensive or time-consuming, and has applications in areas such as clinical applications,
natural language processing, computer vision, and bioinformatics.

Specifically, Active Learning is of vital importance in clinical applications. First,
medical datasets can be large and complex, and labeling them can be time-consuming,
expensive, and potentially error-prone. Active Learning can help reduce the amount of la-
beled data needed, making it more feasible to train accurate models with limited resources
(Budd et al., 2021; Bucklin et al., 2021; Kholghi et al., 2016). Second, accurate modeling
of medical data can have significant implications for patient health outcomes. Active
Learning can help ensure that models are trained on the most informative data points,
leading to more accurate predictions and better treatment recommendations. Finally,
Active Learning can also enable the efficient exploration of new treatments and interven-
tions by providing an effective means of identifying the most promising candidates for
further investigation.

The applications and advantages of Active Learning can be effectively leveraged by the
method of (Peis et al., 2022) presented in chapter 5 due to its robustness, efficiency, and
low cost. For instance, in clinical decision-making with incomplete data, the algorithm
could identify which unobserved features are worth discovering. This could result in
the selection of inexpensive variables, such as simple pervasive tests, that could improve
the success of the decision-making process more effectively than complex, expensive, or
invasive tests.
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APPENDIX A

UG-VAE: additional details

A.1. Experimental extension

A.1.1. Extended results for Section 4.1: Unsupervised learning of
global factors

With the aim at evaluating whether a fraction of the clusters inferred by UG-VAE
encode visually interpretable global/local features, in Figure ?? we include the results for
CelebA for K = 20 clusters. We observe that a considerate proportion of the clusters
captures disentangled generative factors. Moreover, considering the heterogeneity and
variety in the generative factors of celebA faces (up to 40 different attributes), increasing
the number of clusters might lead to capture more representative faces, and thus, gener-
ative global factors modulated by β. In Figure A.2, we appreciate that, apart from skin
color, beard or image contrast, other generative factors controlled by the global variable
are hair style (remarkable for components 9, 16 , 17 or 18), sex (components 4 and 14),
or background color (components 4, 16 and 17). In order to compare these results with
a model trained on a small number of clusters, we include Figure A.1 with samples from
UG-VAE with K = 4. In this case, the model compresses the information of the whole
dataset in only four modes, and thus, the variation of the samples within each cluster is
higher.

(a) d = 0 (b) d = 1 (c) d = 2 (d) d = 3

Figure A.1: Sampling from each cluster of UG-VAE for CelebA when K = 4.

A.1.2. Extended results for Section 4.2: Domain Alignment

We include here the results of a interpolation in both the local space obtained when
the number of components is K = 1, i. e., using the ML-VAE approach. As showed
in Figure A.3, when training ML-VAE with randomly grouped data, global space is not
capable of capturing correlations between datasets, and the local space is in charge of
encoding the transition from celebA to 3D FACES, which is performed within each row.
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(a) d = 0 (b) d = 1 (c) d = 2 (d) d = 3

(e) d = 4 (f) d = 5 (g) d = 6 (h) d = 7

(i) d = 8 (j) d = 9 (k) d = 10 (l) d = 11

(m) d = 12 (n) d = 13 (ñ) d = 14 (o) d = 15

(p) d = 16 (q) d = 17 (r) d = 185 (s) d = 185

Figure A.2: Sampling from UG-VAE for CelebA. We include samples from each of the K
= 20 clusters.
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Figure A.3: ML-VAE interpolation in local (columns) and global (rows) posterior spaces,
fusing celebA and FACES datasets

With the aim at reinforcing the robustness of UG-VAE in domain alignment, we
include in Figure A.4 the results of evaluating GMVAE with two clusters (K = 2) in
a similar setup that in section 4.2. As GMVAE does not have global variables, the
interpolation only applies for the latent encodings in z. Note that the interpolation is
merely a gradual overlap between the two images. Namely, the model is not able to
correlate the features of both images, regardless of their domain. On the other hand,
with UG-VAE, by keeping fixed the global variable and interpolating in the local one,
we maintain the domain but we translate the features of one image into the other. This
analysis corroborates that the model finds this type of correlations in a clearly separated
way.

Figure A.4: Interpolation in the latent space of GMVAE with K = 2 for performing
domain alignment, using the same network architecture than in the local part of UG-
VAE. We interpolate between the encodings of images from CelebA and FACES dataset.

A.2. Networks architecture

In this section we detail the architectures and parameters used for training the models
exposed in the main paper. An extended overview is included in Table A.1.
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APPENDIX B

HH-VAEM: additional details

B.1. Extended experiments

B.1.1. Efficiently incorporating HMC

We face the computational cost of running HMC by defining a small percentage of
training steps for the last stage in Algorithm 1. A 10% of the total training steps for
THMC is sufficient for obtaining the convergence. In Figure B.1 we include the validation
metrics obtained during the optimization of Yatch dataset, where THMC = 2× 103.
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Figure B.1: Validation curves during optimization for Naval dataset.

B.1.2. Reparameterization trick for solving ill-posed HMC with hier-
archical densities

We provide in this section strong empirical demonstration on the efficacy of our pro-
posed reparameterization trick. As stated in Section 5.2.4, näıve implementations of HMC
are ill-posed when combined with hierarchical densities. The autoregressive correlations
lead to non-smooth densities with huge peaks. The large gradients ∇h1:L

log p∗(h1:L)
evaluated on these regions inside the Leapfrog steps of 5.1 make huge modifications of

the proposed states. If we denote these diverged states by h
(ill)
1:L , evaluating the objective

log p∗(h
(ill)
1:L ) lead to overflow issues. This undesired behavior is what we call divergence

of the Leapfrog integrator, and is also illustrated in Figure 35 of (Betancourt, 2017).
In order to avoid the aforementioned overflow issues, we can directly reject these prob-

lematic states. Nevertheless, by doing this, HMC will not properly explore the density by
the time the states fall into the problematic regions, leading to extremely low acceptance
rates. To demonstrate this, we include in Figure B.2 (a) with blue line the evolution of
the acceptance rates when optimizing HMC with the HH-VAEM variant without repa-
rameterization (as illustrated in Figure 5.4 (a)). The acceptance rate is extremely low as
expected, which is a clear indicator of a poorly mixing sampler.

On the contrary, by using our proposed reparameterization trick (Figure 5.4 (b)), we
are able to make HMC work properly and tune the step sizes, getting closer to the ideal
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(a) Mean acceptance rate p̄a (b) log p(xU |xO)

Figure B.2: Demonstration of the efficacy of our reparameterization trick. Our model is
showed with orange lines, and the same model without the reparameterization with blue
lines. In (a), the mean acceptance rate of the HMC proposals over the optimization steps is
included. We demonstrate that without the reparameterization, HMC is ill-posed and by
rejecting the proposals that make the integrator diverge, the acceptance rate is extremely
low, thus not properly exploring the density. In (b), the imputation log likelihood metric
is showed for the whole optimization. With the reparameterization trick, we successfully
solve the pathological issues, leading to a considerable increase of the metric.

acceptance rate p̄a = 0.65 (Neal et al., 2011). Evaluations are applied to the same valida-
tion split of the Boston dataset. The step sizes of HMC are initialized from U(0.05, 0.2)
in both cases.

Further, we also include in Figure B.2 (b) the evolution of the imputation log likelihood
metric of (5.14) during the whole optimization for both approaches. First 1, 8 × 104

steps correspond to the pretraining stage using only the ELBO. When introducing HMC
without the reparameterization, due to the low acceptance rate, the states hardly move
from the initial proposal, or move away from the density, and the joint optimization fail.
We demonstrate again the effectiveness of the reparameterization trick by observing an
increase in this metric.

B.1.3. Deterministic imputation metrics

We include in Table B.1 results on the RMSE obtained with other discriminative val-
idated predictors, using mean imputation under the same missing rates. Additionally,
we include here the missForest in the baselines, a wide-spread method for missing data
imputation using a Random Forest approach (Stekhoven and Bühlmann, 2012). For clas-
sification tasks, the error rate is considered. In almost all cases, HH-VAEM outperforms
the baselines.

Bank Insurance Avocado Naval Yatch Diabetes Concrete Wine Energy Boston

missForest 0.64± 0.01 0.61± 0.06 0.59± 0.02 0.30± 0.01 0.86± 0.12 0.76± 0.08 0.76± 0.07 0.77± 0.11 0.64± 0.08 0.59± 0.06
VAEM 0.57± 0.01 0.40± 0.01 0.59± 0.00 0.33± 0.01 0.93± 0.04 0.79± 0.02 0.74± 0.04 0.64± 0.03 0.75± 0.02 0.65± 0.02

MIWAEM 0.56± 0.00 0.39± 0.00 0.59± 0.01 0.34± 0.01 0.94± 0.04 0.75± 0.01 0.71± 0.03 0.63± 0.02 0.75± 0.02 0.63± 0.01
H-VAEM 0.56± 0.01 0.39± 0.00 0.58± 0.01 0.32± 0.01 0.92± 0.05 0.77± 0.01 0.71± 0.02 0.60± 0.04 0.55± 0.03 0.59± 0.01

HMC-VAE 0.55± 0.01 0.38± 0.00 0.58± 0.01 0.30± 0.02 0.91± 0.05 0.76± 0.03 0.71± 0.02 0.60± 0.02 0.55± 0.02 0.57± 0.02
HH-VAEM 0.54± 0.01 0.38± 0.00 0.57± 0.00 0.29± 0.02 0.90± 0.00 0.75± 0.01 0.70± 0.01 0.59± 0.04 0.54± 0.01 0.56± 0.03

Table B.1: Test RMSE of the unobserved features for our model and baselines.
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B.1.4. Likelihood of the observed features

We include in this section results on the negative log likelihood of the observed features

log p(xO) ≈ logEε∼q(T )(ε|xO) [p(xO|ε)] ≈ log
1

k

k∑
i

p(xO|εi). (B.1)

Results are included in Table B.2. In almost all the cases, we confirm the incremental
superiority when adding each part of our proposed design.

bank insurance avocado naval yatch diabetes concrete wine energy boston

VAEM 0.51± 0.05 0.99± 0.05 0.44± 0.01 0.21± 0.01 0.62± 0.13 0.92± 0.12 0.63± 0.18 0.73± 0.18 1.86± 0.09 0.56± 0.11
MIWAEM 0.63± 0.02 1.06± 0.03 0.60± 0.03 0.33± 0.01 0.75± 0.07 1.05± 0.06 0.76± 0.09 0.80± 0.06 1.77± 0.15 0.67± 0.03
H-VAEM 0.40± 0.04 0.93± 0.04 0.42± 0.05 0.19± 0.07 0.58± 0.09 0.70± 0.13 0.53± 0.18 0.71± 0.15 0.38± 0.02 0.49± 0.07

HMC-VAE 0.37± 0.07 0.92± 0.04 0.39± 0.06 0.18± 0.05 0.54± 0.10 0.68± 0.07 0.49± 0.22 0.55± 0.07 0.40± 0.06 0.41± 0.04
HH-VAEM 0.33± 0.03 0.95± 0.05 0.36± 0.01 0.17± 0.04 0.45± 0.04 0.68± 0.16 0.40± 0.16 0.64± 0.17 0.37± 0.06 0.41± 0.04

Table B.2: Test NLL of the observed features for our model and baselines.

B.1.5. Heterogeneous likelihoods

In experiment 5.4.2 we reported an average likelihood across heterogeneous variables.
Although this quantity is not a valid joint likelihood probability, we employed this average
to provide a fair comparison on models that have been trained on the same heterogeneous
likelihoods. In this section, we show the comparison on averaging separately the three con-
sidered marginal likelihoods (Gaussian, Bernoulli and Categorical) for two of the biggest
datasets considered on Tables B.3-B.5. Again, we show the incremental superiority when
adding the different design choices of our model.

Bank Avocado

VAEM 0.36± 0.29 0.26± 0.08
MIWAEM 0.33± 0.27 0.32± 0.06
H-VAEM 0.26± 0.22 0.29± 0.07

HMC-VAEM 0.25± 0.21 0.25± 0.08
HH-VAEM 0.20± 0.22 0.22± 0.07

Table B.3: Average test
Gaussian NLL of the ob-
served features.

Bank Avocado

VAEM 0.13± 0.00 0.06± 0.00
MIWAEM 0.15± 0.00 0.09± 0.00
H-VAEM 0.11± 0.00 0.07± 0.00
HMC-VAEM 0.08± 0.00 0.05± 0.00
HH-VAEM 0.07± 0.00 0.04± 0.00

Table B.4: Average test
Bernoulli NLL of the ob-
served features.

Bank Avocado

VAEM 0.24± 0.16 0.33± 0.00
MIWAEM 0.26± 0.17 0.36± 0.00
H-VAEM 0.23± 0.16 0.32± 0.00

HMC-VAEM 0.22± 0.15 0.30± 0.00
HH-VAEM 0.21± 0.15 0.30± 0.00

Table B.5: Average test Cat.
NLL of the observed fea-
tures.

B.1.6. SAIA log-likelihoods

In order to extend the results provided in Section 5.4.4, we include here the log-
likelihoods curves when dynamically selecting features using the same procedure (Figure
B.3).

B.1.7. Training times

Table B.6 shows the average training time in minutes for each model in the experiments
for Tables 5.1 and 5.2. The ratio between training times for our method and the Gaussian
baselines is approximately between 5 and 10.
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Figure B.3: SAIA log-likelihood curves. Horizontal axis shows acquisition steps (number
of discovered features). Vertical axis is the log-likelihood of the target log p(y|xO).

Bank Avocado Yatch Diabetes Concrete Wine Energy Boston

VAEM 29.92± 0.39 21.49± 1.64 5.89± 0.01 8.79± 0.30 7.70± 0.58 7.92± 0.11 8.18± 0.09 10.01± 0.34
MIWAEM 63.33± 6.20 37.17± 2.28 8.21± 0.24 13.29± 0.33 11.51± 0.52 11.81± 0.13 16.71± 0.16 15.01± 0.13
H-VAEM 41.44± 0.38 33.83± 0.81 15.84± 0.11 13.38± 0.47 11.80± 0.38 10.61± 0.54 12.71± 1.20 13.74± 1.43
HMC-VAEM 281.88± 9.14 356.22± 5.94 23.50± 1.60 50.42± 1.18 42.70± 3.14 63.46± 1.97 90.87± 7.05 103.72± 7.24
HH-VAEM 316.81± 9.49 388.28± 6.47 27.08± 0.12 68.29± 4.06 65.78± 0.43 79.97± 5.53 140.33± 7.36 129.30± 4.69

Table B.6: Training times (in minutes) of our model and baselines.

B.1.8. SAIA times

The times for obtaining the SAIA metric curves in Section 5.4.4 are included in Figure
B.4. Although the performance is improved with HH-VAEM, it requires considerably
longer time than the baselines to evaluate the reward, due to the HMC algorithm for
sampling from the better approximated posterior. Future work might be oriented in
proposing ways to measure and reduce this gap.
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Figure B.4: SAIA time curves. Horizontal axis shows acquisition steps (number of dis-
covered features). Vertical axis is the elapsed time.
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