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Contributions

1.Novel Hyper-Transformer Decoder (HD) - first full Transformer-based
probabilistic decoder for INR parameter generation.

2. Integration into Latent Diffusion Models with support for both full train-
ing and hyper-transforming paradigms.

3. Latent Diffusion Models for INRs (LDMI) offers scalable framework over-
coming MLP-based hypernetwork bottlenecks while increasing expres-
siveness INRs.

Motivation

Challenges: Existing generative frameworks rely on structured represen-
tations that constrain resolution and generalization. MLP-based hypernet-
works suffer from scalability bottlenecks when generating high-dimensional
INRs, limiting flexibility and expressiveness for complex data.

Solution: LDMI combines Transformer-based hypernetworks with latent
diffusion models for scalable, probabilistic INR generation.

Preliminaries

Implicit Neural Representations (INRs): Neural networks represent-
ing continuous functions with parameters Φ:

fΦ(x) = y, x ∈ Rd,y ∈ Rc (1)

Hypernetworks: Networks generating parameters for other networks:

Φ = gϕ(z) ↦ fΦ(x) = ŷ (2)

Latent Diffusion Models: Generative models applying diffusion in com-
pressed latent space:

LDDPM = Ez,ϵ,t [∥ϵ − ϵθ(zt, t)∥2] (3)

Fast sampling via DDMI:
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LDMI

Figure 2: LDMI Encoder (left) and Latent Diffusion trained on latent space (right).

Approach: LDMI combines Transformer-based hypernetworks with la-
tent diffusion models for scalable, probabilistic INR generation.

•Encoder: maps data to variational parameters z.

•Decoder: full Transformer generates INR parameters via cross-
attention and weight reconstruction.

Figure 3: The HD Decoder
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Training Paradigms:

1. Full Training:
First stage:

LVAE(ϕ,ψ) = Eqψ(z∣X,Y ) [log pΦ(Y ∣X)]−β ⋅DKL(qψ(z∣X,Y )∣∣p(z)) (6)

Second stage:

LDDPM = Eq(zt∣z0) [∥ϵ − ϵθ(zt, t)∥
2
] (7)

2. Hyper-Transforming: Adapt pre-trained LDM by freezing {ψ, θ}
and training decoder:

LHT(ϕ) = Eqψ(z∣X,Y ) [log pΦ(Y ∣X)] , (8)

Hyper-transforming enables efficient adaptation of existing diffusion
models without full retraining, leveraging pre-trained latent spaces.

Results

Generation

LDMI achieves high-quality unconditional and conditional generation
across multiple modalities and arbitrary resolutions.
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Figure 4: LDMI samples at multi-
ple resolutions and modalities.
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Figure 5: CelebA-HQ (64 × 64)
samples from baselines and LDMI.
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Figure 6: Inpainting with LDMI on
CelebA-HQ (256 × 256).

Reconstruction:

Our framework models the space of INRs to represent data at signifi-
cantly higher resolutions, beyond the capabilities of existing methods.
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(a) ImageNet (b) CelebA-HQ (256 × 256)

Figure 7: Reconstructions by our LDMI trained by hyper-transforming pre-trained LDMs.

Quantitative Results:

We generate INRs that are approximately 7× larger in size using hyper-
networks with less than 1/3 the number of parameters.

Model PSNR (dB) ↑ FID ↓ HN Params ↓

CelebA-HQ (64 × 64)
GASP - 7.42 25.7M
Functa ≤ 30.7 40.40 -
VAMoH 23.17 66.27 25.7M
LDMI 24.80 18.06 8.06M

ImageNet (256 × 256)
Spatial Functa ≤ 38.4 ≤ 8.5 -
LDMI 20.69 6.94 102.78M

Table 1: Metrics on CelebA-HQ and ImageNet.

Method HN Params INR Weights INR/HN

GASP/VAMoH 25.7M 50K 0.0019
LDMI 8.06M 330K 0.0409

Table 2: Scalability analysis.

Model Chairs (acc %) ↑ ERA5 (PSNR dB) ↑

Functa 99.51 34.9
VAMoH 96.75 39.0
LDMI 97.25 44.6

Table 3: Reconstruction quality on
ShapeNet Chairs and ERA5.


