

Hyper-Transforming Latent Diffusion Models

UNIVERSITÄT **SAARLANDES**

Ignacio Peis, Batuhan Koyuncu, Isabel Valera, Jes Frellsen

Contributions

- 1. Novel Hyper-Transformer Decoder (HD) first full Transformer-based probabilistic decoder for INR parameter generation.
- 2. Integration into Latent Diffusion Models with support for both full training and hyper-transforming paradigms.
- 3. Latent Diffusion Models for INRs (LDMI) offers scalable framework overcoming MLP-based hypernetwork bottlenecks while increasing expressiveness INRs.

Motivation

Challenges: Existing generative frameworks rely on structured representations that constrain resolution and generalization. MLP-based hypernetworks suffer from scalability bottlenecks when generating high-dimensional INRs, limiting flexibility and expressiveness for complex data.

Solution: LDMI combines Transformer-based hypernetworks with latent diffusion models for scalable, probabilistic INR generation.

Preliminaries

Implicit Neural Representations (INRs): Neural networks representing continuous functions with parameters Φ :

$$f_{\Phi}(\boldsymbol{x}) = \boldsymbol{y}, \quad \boldsymbol{x} \in \mathbb{R}^d, \boldsymbol{y} \in \mathbb{R}^c$$
 (1)

Hypernetworks: Networks generating parameters for other networks:

$$\Phi = g_{\phi}(\boldsymbol{z}) \mapsto f_{\Phi}(\boldsymbol{x}) = \hat{\boldsymbol{y}}$$
 (2)

Latent Diffusion Models: Generative models applying diffusion in compressed latent space:

$$\mathcal{L}_{DDPM} = \mathbb{E}_{z,\epsilon,t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|^2 \right]$$
 (3)

Fast sampling via DDMI:

$$p_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t}) = \begin{cases} \mathcal{N}\left(f_{\theta}^{(1)}\left(\boldsymbol{z}_{1}\right), \sigma_{1}^{2}\boldsymbol{I}\right) & \text{if } t = 1\\ q_{\sigma}\left(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t}, f_{\theta}^{(t)}\left(\boldsymbol{z}_{t}\right)\right) & \text{otherwise,} \end{cases}$$
(4)

LDMI

Figure 2: LDMI Encoder (left) and Latent Diffusion trained on latent space (right).

Approach: LDMI combines Transformer-based hypernetworks with latent diffusion models for scalable, probabilistic INR generation.

- **Encoder**: maps data to variational parameters z.
- Decoder: full Transformer generates INR parameters via crossattention and weight reconstruction.

Figure 3: The HD Decoder

$$\mathcal{R}^{(\text{scale})}\left(\boldsymbol{w}_{\lfloor c/k \rfloor}^{\text{o}}, \bar{\boldsymbol{w}}_{c}^{\text{b}}\right) = \left(1 + \boldsymbol{w}_{\lfloor c/k \rfloor}^{\text{o}}\right) \odot \bar{\boldsymbol{w}}_{c}^{\text{b}}. \tag{5}$$

Training Paradigms:

Full Training:

First stage:

$$\mathcal{L}_{\mathsf{VAE}}(\phi, \psi) = \mathbb{E}_{q_{\psi}(\boldsymbol{z}|\boldsymbol{X}, \boldsymbol{Y})} [\log p_{\Phi}(\boldsymbol{Y}|\boldsymbol{X})] - \beta \cdot D_{KL}(q_{\psi}(\boldsymbol{z}|\boldsymbol{X}, \boldsymbol{Y})||p(\boldsymbol{z}))$$
(6)

Second stage:

$$\mathcal{L}_{\mathsf{DDPM}} = \mathbb{E}_{q(\boldsymbol{z}_t|\boldsymbol{z}_0)} \left[\|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{z}_t, t)\|^2 \right]$$
 (7)

2. Hyper-Transforming: Adapt pre-trained LDM by freezing $\{\psi,\theta\}$ and training decoder:

$$\mathcal{L}_{\mathsf{HT}}(\phi) = \mathbb{E}_{q_{\psi}(\boldsymbol{z}|\boldsymbol{X},\boldsymbol{Y})} \left[\log p_{\Phi}(\boldsymbol{Y}|\boldsymbol{X}) \right], \tag{8}$$

Hyper-transforming enables efficient adaptation of existing diffusion models without full retraining, leveraging pre-trained latent spaces.

Results

Generation

LDMI achieves high-quality unconditional and conditional generation across multiple modalities and arbitrary resolutions.

ple resolutions and modalities.

Figure 4: LDMI samples at multi- Figure 5: CelebA-HQ (64×64) Figure 6: Inpainting with LDMI on

samples from baselines and LDMI. CelebA-HQ (256×256) .

Reconstruction:

Our framework models the space of INRs to represent data at significantly higher resolutions, beyond the capabilities of existing methods.

Figure 7: Reconstructions by our LDMI trained by hyper-transforming pre-trained LDMs.

Quantitative Results:

We generate INRs that are approximately 7× larger in size using hypernetworks with less than 1/3 the number of parameters.

Model	PSNR (dB) ↑	FID ↓	HN Params ↓
CelebA-HQ (64×64)			
GASP	-	7.42	25.7M
Functa	≤ 30.7	40.40	-
VAMoH	23.17	66.27	25.7M
LDMI	24.80	18.06	8.06M
ImageNet (256×256)			
Spatial Functa	≤ 38.4	≤ 8.5	_
LDMI	20.69	6.94	102.78M

Table 1: Metrics on CelebA-HQ and ImageNet.					
Method	HN Params	INR Weights	INR/HN		
GASP/VAMoH	25.7M	50K	0.0019		
LDMI	8.06M	330K	0.0409		

Table 2: Scalability analysis.

Model Chairs (acc %) ↑ ERA5 (PSNR dB) ↑ 99.51 96.75 39.0 97.25

Reconstruction quality on ShapeNet Chairs and ERA5.

