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Introduction

Deep Generative Models

e Learning probability distributions on data using Deep Neural Networks.
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Introduction

Discretization of signals

e We typically deal with discretized versions of data that are continuous in nature.

2D Images 3D Images Polar data Time series Audio Motion sequences Video
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Introduction

NNs to exploit discretized data

I

CNNs, Vision Transformers RNNs, Transformers
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Introduction

Real data is continuous in nature

e Every discretized observation comes from an underlying continuous signal.

2D Images 3D Images Polar data Time series Audio Motion sequences Video

Spatial Temporal Spatio-temporal
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Introduction

e Focusing on images:

520 Ir'nage - e Generator function f : X — Y creates this speficic image with the map-
ping f(z4) = Ya, d € [1,..., D]

e Each pixel is now a pair {x4,yq} where 4 € R?, y4 € R°

..............

- | B e Full image is a pair of sets X = {z4}7 ,, Ya={ya} .

-----
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Introduction

e Learning to generative in the space of functions allows for naturally handling:

Inpainting

Conditional generation Super-resolution

Samples
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Introduction =
Implicit Neural Representations (INRs) [2-4]
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Introduction

How to scale to large datasets?

How to map data to an INR?
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Introduction
Hypernetworks [5]
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5 Ha et at., 2017
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Introduction

How to infer the latent representation z?

po(2)
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Related Work

VAMoH P

e Variational Inference

o Requires flexible, learnable prior.
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Motivation
Flexibility of the latent space in [6, 7, 9]

X Poor generation quality.
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Motivation =
Hypernetwork bottleneck in [6, 9]

(3-layers X 128 units)
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Latent Diffusion Models of INRs

LDMI [1 ] Transformer-based
Hypernetwork [10]

= > — ¢u(2|X,Y) =
L =3 >

Latent Diffusion [11]
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[1] peis et at., 2025 1101 Chen et at., 2024 [ Rombach et at., 2021
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Latent Diffusion Models of INRs

The HD decoder
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e The latent tokens come from tokenizing z (following ViT [32]) and processing them via a Transformer Encoder.
e The weight tokens are columns of the weight matrices.

e To trade-off representation capacity vs computational feasibility, we learn a subset of the columns, G.
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Latent Diffusion Models of INRs

The HD decoder

We will firstly train an “under-regularized” autoencoder to accurately represent data in a (tensor-
shaped) latent space.

» The latents are mapped into INRs using our transformer—based hypernetwork decoder.
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Latent Diffusion Models of INRs

Diffusion Models [12]

Denoising Score Matching
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121 Song et at., 2020
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Latent Diffusion Models of INRs

Diffusion Models [12]
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Latent Diffusion Models of INRs

Latent Diffusion Models [11]

e First stage:
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Latent Diffusion Models of INRs =
Hyper-Transforming
e We can download pre-trained LDMs and just re-train only our decoder!
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Experiments =

Datasets

CelebA-HQ (64x64)

ShapeNET (Voxels)

" W =~ v AR
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Experiments =

Generation

(a) CelebA-HQ
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Experiments

Reconstruction

Model PSNR (dB)t FID| HN Params |
CelebA-HQ (64 x 64)

GASP [Dupont et al., 2022a] - 7.42 25. M
Functa [Dupont et al., 2022b] <30.7 4040 -
VAMOoH [Koyuncu et al., 2023] 23.17 66.27 25.TM
LDMI 24.80 18.06 8.06M
ImageNet (256 x 256)

Spatial Functa [Bauer et al., 2023] <384 <85 -
LDMI 20.69 6.94 102.78M

Table 1: Metrics on CelebA-HQ and ImageNet.

Model Chairs (PSNR) + ERAS (PSNR)
Functa [Dupont et al., 2022b] 29.2 34.9
VAMOoH [Koyuncu et al., 2023] 38.4 39.0
LDMI 38.8 44.6

Table 2: Reconstruction quality (PSNR in dB) on ShapeNet
Chairs and ERAS climate data, demonstrating LDMI’s strong
generalization capabilities across modalities. Note that
GASP is omitted as it is not applicable to INR reconstruc-
tion tasks.

Method HN Params INR Weights Ratio (INR/HN)
GASP/VAMoH 25.TM 50K 0.0019
LDMI 8.06M 330K 0.0409

Table 3: Parameter efficiency of LDMI.
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Ours
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Experiments =

Data completion

VAMOoH

Samples
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Conclusion

Thanks to using Latent Diffusion and a novel Transformer-based hypernetwork, LDMI enhances
e Resolution-agnostic generation.

e Resolution-agnostic reconstruction.

While:
\/Being scalable.
\/Being efficient in parameter usage.
v Working with multiple data modalities.

\/Allowing for generation of bigger INRs and more complex data.
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