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Introduction
Deep Generative Models
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• Learning probability distributions on data using Deep Neural Networks.

Implicitly Explicitly

Generative Adversarial Networks (GANs) Variational Autoencoders (VAEs)
Diffusion Models

Flow-based models
Energy-based models

[0] Peis, 2023
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Introduction
Discretization of signals

• We typically deal with discretized versions of data that are continuous in nature.
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Spatial Temporal Spatio-temporal

2D Images 3D Images Polar data Time series Audio Motion sequences Video
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Introduction
NNs to exploit discretized data
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CNNs, Vision Transformers RNNs, Transformers CNNs, RNNs, Transformers

[6]

[7]

[8]

[9]

Spatial Temporal Spatio-temporal
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Introduction
Real data is continuous in nature

• Every discretized observation comes from an underlying continuous signal.
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Spatial Temporal Spatio-temporal

2D Images 3D Images Polar data Time series Audio Motion sequences Video
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Introduction

• Focusing on images:
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Introduction

• Learning to generative in the space of functions allows for naturally handling:
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Inpainting

Conditional generation Super-resolution
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Introduction
Implicit Neural Representations (INRs) [2-4]
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Data Generator

Data generator          is unique to each image

…

i=1

…

i=N

…
…

…
…

[2] Sitzmann et at., 2020 [3] Mescheder et at., 2019 [4] Sitzmann et at., 2019
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Introduction
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How to scale to large datasets?

How to map data to an INR?
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Introduction
Hypernetworks [5]
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Have           , a summary 
representation of image.

[5] Ha et at., 2017

Hypernetwork [5]
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Introduction
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How to infer the latent representation z?
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Related Work
VAMoH [9]

• Variational Inference

o Requires flexible, learnable prior.

12

HyperNetwork Data Generator

: Latent Variable

Encoder

Prior Distribution

Posterior 
Distribution

[9] Koyuncu et at., 2023
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Related Work
VAMoH [9]

• Variational Inference

o Requires flexible, learnable prior.
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The hole problem

[9] Koyuncu et at., 2023
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Motivation
Flexibility of the latent space in [6, 7, 9]
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❌Poor generation quality.

Image Reconstruction with VAMoH

[6] Dupont et at., 2020 [9] Koyuncu et at., 2023[7] Dupont et at., 2022
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Motivation
Hypernetwork bottleneck in [6, 9]
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[6] Dupont et at., 2020 [9] Koyuncu et at., 2023

(3-layers ⨉ 128 units) 

𝒈 𝒛 ∈ ℝ50000 Data Generator



Proposed method

16
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Latent Diffusion Models of INRs
LDMI [1]
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[1] Peis et at., 2025

Latent Diffusion [11]

Transformer-based 
Hypernetwork [10] 

[10] Chen et at., 2024 [11] Rombach et at., 2021
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Latent Diffusion Models of INRs
The HD decoder

• The latent tokens come from tokenizing 𝒛 (following ViT [32]) and processing them via a Transformer Encoder.

• The weight tokens are columns of the weight matrices.

• To trade-off representation capacity vs computational feasibility, we learn a subset of the columns, G.

18
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Latent Diffusion Models of INRs
The HD decoder

We will firstly train an “under-regularized”  autoencoder to accurately represent data in a (tensor-
shaped) latent space.

➢ The latents are mapped into INRs using our transformer–based hypernetwork decoder.

19
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Latent Diffusion Models of INRs
Diffusion Models [12]
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Denoising Score Matching

[12] Song et at., 2020
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Latent Diffusion Models of INRs
Diffusion Models [12]

21

[12] Song et at., 2020
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Latent Diffusion Models of INRs
Latent Diffusion Models [11]
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• First stage:

• Second stage:

[11] Rombach et at., 2021
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Latent Diffusion Models of INRs
Hyper-Transforming

• We can download pre-trained LDMs and just re-train only our decoder!

23
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Experiments
Datasets
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CelebA-HQ (256x256)CelebA-HQ (64x64)

ERA5 (Polar)
ShapeNET (Voxels)

ImageNet (256x256)
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Experiments
Generation
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Experiments
Reconstruction
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Table 3: Parameter efficiency of LDMI.
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Experiments
Reconstruction CelebA-HQ (64x64) CelebA-HQ (256x256)
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Experiments
Data completion

VAMoH

LDMI
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Conclusion

Thanks to using Latent Diffusion and a novel Transformer-based hypernetwork, LDMI enhances

• Resolution-agnostic generation.

• Resolution-agnostic reconstruction.

While:

✓Being scalable.

✓Being efficient in parameter usage.

✓Working with multiple data modalities.

✓Allowing for generation of bigger INRs and more complex data.

29



Thank you!
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