

HYPER-TRANSFORMING LATENT DIFFUSION MODELS

Ignacio Peis Technical University of Denmark ipeaz@dtu.dk

PIONEER CENTRE FOR ARTIFICIAL INTELLIGENCE

Motivation

We typically discretized data that are continuous in nature.

Spatial

Motivation

Real data can be expressed as a function over continuous coordinate systems.

 $f: \mathbb{R}^2 \to \mathbb{R}^3, f(x_1, x_2) = (r, g, b) \quad f: \mathbb{R}^3 \to \{0, 1\}, f(x_1, x_2, x_3) = p \qquad f: \mathbb{R}^2 \to \mathbb{R}, f(\varphi, \lambda) = T$

 $f: \mathbb{R}^3 \to \mathbb{R}^3, f(x_1, x_2, t) = (r, g, b)$

Motivation

Focusing on images:

- Generator function $f: X \to Y$ creates this speficic image with the mapping $f(x_d) = y_d, d \in [1, ..., D]$
- Each pixel is now a pair $\{x_d, y_d\}$ where $x_d \in \mathbb{R}^2, y_d \in \mathbb{R}^3$
- Full image is a pair of sets $X = \{x_d\}_{d=1}^D$, $Y_d = \{y_d\}_{d=1}^D$

Data generator $f_{\boldsymbol{\theta}_i}$ is unique to each image

How to scale to large datasets?

How to map a latent representation to an INR?

^[23] Ha et at., 2017

Have $oldsymbol{z}^{(i)}$, a summary representation of image.

^[23] Ha et at., 2017

Previous work $GASP^{[5]}$

Adversarial training:

Can't tackle inference related tasks. X

^[5] Dupont et at., 2020

Point-wise Convolution

Previous work Functa^[6]

- Decoupled training:
 - 1. Fit an INR per datapoint using SIREN^[20] and modulation vectors, named functas.
 - Train any generative model on the functa 2. dataset of vectors.
- Computationally expensive inference. X

Previous work Spatial Functa^[26]

- Decoupled training:
 - 1. Fit an INR per datapoint using SIREN^[20] and **modulation tensor**.
 - Train any generative model on the functa dataset of tensors. 2.
- Computationally expensive inference. X

How to infer the latent representation *z*?

Proposed methods (1)

VAMoH

Variational Mixture of HyperGenerators [25]

(a) Generative model

^[25] Koyuncu et at., 2023

(b) Inference model

VAMoH Encoder

 $oldsymbol{z}^{(i)}$: Latent Variable

VAMOH Encoder

• PointConv^[21] encoder for point clouds.

^[21] Wu et at., 2019

VAMoH Decoder

 $oldsymbol{z}^{(i)}$: Latent Variable

VAMoH Reconstruction

 $\boldsymbol{Y}^{(i)} \sim p_{\boldsymbol{\theta}_{i}}(\boldsymbol{Y}^{(i)}|\boldsymbol{X}^{(i)}, \boldsymbol{z}^{(i)})$

VANOH Super Resolution

VAMoH **Image Generation**

$$Y^{(i)} \sim p_{\theta_i}(Y^{(i)}|X^{(i)}, z^{(i)})$$

VAMoH **Image Generation**

$$\boldsymbol{Y}^{(i)} \sim p_{\boldsymbol{\theta}_{i}}(\boldsymbol{Y}^{(i)}|\boldsymbol{X}^{(i)}, \boldsymbol{z}^{(i)})$$

VAMoH Optimization

How to learn all these steps end-to-end from data?

VAMoH Optimization

How: Learn an approximation $q_{\gamma}(\boldsymbol{z}|\boldsymbol{Y}, \boldsymbol{X}) \approx p(\boldsymbol{z}|\boldsymbol{Y}, \boldsymbol{X})$

VAMoH Optimization

$$\max_{\phi,\gamma} \sum_{i=1}^{N} \mathcal{L}(\phi,\gamma; \boldsymbol{Y}^{(i)}, \boldsymbol{X}^{(i)})$$

$$, \boldsymbol{Y}^{(i)}$$
, $i \in [N]$

VANOH 'Holes' problem

Regularization Term: $\min_{\gamma} D_{KL} \left(q_{\gamma}(\boldsymbol{z} \mid \boldsymbol{Y}, \boldsymbol{X}) \| p_{\psi}(\boldsymbol{z}) \right)$ We need to align the approximate posterior with the prior.

$$p_{\psi}(\boldsymbol{z}) = q_{\gamma}(z)$$

$$\min_{\gamma,\psi} D_{KL}(q_{\gamma}(\boldsymbol{z}|\boldsymbol{Y},\boldsymbol{X}) \parallel p_{\psi}(\boldsymbol{z}))$$

$p(\boldsymbol{z})$ $q(\boldsymbol{z}|\boldsymbol{X}_i,\boldsymbol{Y}_i)$

Problem:

If the prior is too simple, it hinders generation quality.

Solution:

Learn a more complex $p_{\psi}(z)$ with another NN.

VAMoH **Flow-based prior**

More expressive prior using RealNVP (Real-valued, Non-Volume Preserving) Flow. \bullet

$$\sim p_{\psi}(z)$$

VAMoH **Mixture of HyperGenerators**

Single HyperGenerator

Mixture of HyperGenerators

VAMOH Mixture of HyperGenerators

Image Reconstruction with Mixture of HyperGenerators

VAMoH

• For a single data sample

$$(oldsymbol{X},oldsymbol{Y})$$

$$\mathcal{L}(\boldsymbol{Y}, \boldsymbol{X}; \psi, \phi, \boldsymbol{\gamma}) = \sum_{d=1}^{D} \mathbb{E}_{q_{\gamma_{\boldsymbol{z}}}(\boldsymbol{z} | \boldsymbol{Y}, \boldsymbol{X})} \left[\sum_{k=1}^{K} \log p_{\boldsymbol{\theta}_{k}} \left(\boldsymbol{y}_{d} \mid \boldsymbol{x}_{d} \right) \cdot \pi_{dk} \right] \\ - D_{KL} \left(q_{\gamma_{c}}(\boldsymbol{C} \mid \boldsymbol{z}, \boldsymbol{X}, \boldsymbol{Y}) \| p_{\psi_{c}}(\boldsymbol{C} \mid \boldsymbol{z}, \boldsymbol{X}) \right)$$

T

$p_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{y}_{d} \mid \boldsymbol{x}_{d}\right) \cdot \pi_{dk} - D_{KL}\left(q_{\gamma_{z}}(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{Y}) \| p_{\psi_{z}}(\boldsymbol{z})\right)$

- KL of the continuous latent variable
- KL of the discrete latent variable

Experiments **Baselines**

Model	Approach	Training Procedure	Generation	Reconstruction, Imputation, Super Resolution
GASP (2021) [5]	GAN	Minimax	Forward Pass	$\boldsymbol{\times}$

Experiments **Baselines**

Model	Approach	Training Procedure	Generation	Reconstruction, Imputation, Super Resolution
GASP (2021) [5]	GAN	Minimax	Forward Pass	$\boldsymbol{\times}$
Functa (2022) [6]	Flow-based	Bilevel optimization	+ Extra Generative Model	Optimization procedure(s) per sample

Experiments **Baselines**

Model	Approach	Training Procedure	Generation	Reconstruction, Imputation,
GASP (2021) [5]	GAN	Minimax	Forward Pass	$\min_{\phi} -\log p(\phi) + \lambda \sum_{i \in \mathcal{I}} \ f_{\phi}(\mathbf{x}_i) - \mathbf{f}_i\ _2^2$
Functa (2022) [6]	Flow-based	Bilevel optimization	+ Extra Generative Model	Optimization procedure(s) per sample

Experiments **Baselines**

Model	Approach	Training Procedure Generation		Reconstruction, Imputation, Super Resolution
GASP (2021) [5]	GAN	Minimax	Forward Pass	$\boldsymbol{\times}$
Functa (2022) [6]	Flow-based	Bilevel optimization	+ Extra Generative Model	Optimization procedure(s) per sample
VaMoH (ours)	VAE-based	Single optimization	Forward Pass	Forward pass

VAMoH provides a probabilistic generative model that is efficient, robust, and expressive for modeling distribution over functions.

Experiments Datasets

PolyMNIST (28x28)

Shapes3D (64x64)

CelebA-HQ (64x64)

ERA5 (Polar)

ShapeNET (Voxels)

Experiments Generation

CelebA-HQ

Shapes3D

Experiments Generation

PolyMNIST

ERA5

GASP VAMoH

ShapeNET

Experiments Reconstructions

(c) POLYMNIST

SHAPES3D

Experiments Inference times

Table 2: Comparison of inference time (seconds) for reconstruction task of VaMoH and Functa. On the right-most two columns, we show the speed improvement of VaMoH compared to Functa (3) which is trained with 3 gradient steps as suggested in the original paper [Dupont et al., 2022b] and Functa (10) which is trained with 10 gradient step to obtain the results of Functa depicted in Figures 16,17. Please note that these experiments are run on the same GPU device.

	Model Inference Time (secs)			Speed Improvement		
Dataset	VaMoH	Functa (3)	Functa (10)	vs. Functa (3)	vs. Functa (10)	
POLYMNIST	0.00453	0.01648	0.05108	x 3.64	x 11.28	
Shapes3D	0.00536	0.01759	0.05480	x 3.28	x 10.22	
CELEBA HQ	0.00757	0.01733	0.05381	x 2.29	x 7.11	
ERA5	0.00745	0.01899	0.05932	x 2.55	x 7.96	
ShapeNet	0.00689	0.02095	0.06576	x 3.04	x 9.54	

	Model	Inference T	ime (secs)	Speed Im	provement
Dataset	VaMoH	Functa (3)	Functa (10)	vs. Functa (3)	vs. Functa (10)
POLYMNIST	0.00455	0.01649	0.05109	x 3.62	x 11.23
Shapes3D	0.00544	0.01768	0.05489	x 3.25	x 10.09
CELEBA HQ	0.00833	0.01729	0.05377	x 2.08	x 6.46
ERA5	0.00790	0.01997	0.06030	x 2.53	x 7.63
ShapeNet	0.01440	0.02089	0.06569	x 1.45	x 4.56

Reconstruction

Super-reconstruction

Experiments Image completion

Missing a patch (in-painting)

Missing half of the image

0

Image out-painting

Proposed method (2)

Limitations of previous work Flexibility of the latent space in [5, 6, 25]

• This makes generation quality poor.

(a) CELEBA HQ

^[5] Dupont et at., 2020 ^[6] Dupont et at., 2022 ^[25] Koy

(b) SHAPES3D

Limitations of previous work Hypernetwork bottleneck in [5, 25]

^[5] Dupont et at., 2020

^[25] Koyuncu et at., 2023

Proposed methods (2) Hyper-Transforming Latent Variable Models [27] (LDMI)

Latent Diffusion [28]

^[27] Peis et at., 2025

Proposed methods (2) The HD decoder

 \rightarrow **→** Transformer Encoder \rightarrow \rightarrow \rightarrow \boldsymbol{z}

^[27] Peis et at., 2025

LDM **Diffusion Models [29]**

Denoising Score Matching

^[29] Song et at., 2020

$$_{0}\left[\left\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t),t) - \nabla_{\mathbf{x}(t)}\log p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0))\right\|_{2}^{2}\right]\right\}$$

LDMI **Diffusion Models [29]**

^[29] Song et at., 2020

$s_{ heta}(oldsymbol{x}_t,t)$

LDM **DDPM** [30]

$$p_{\theta}(\mathbf{x}_{0:T}) := p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}), \quad p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$

$$q(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}) := \prod_{t=1}^{T} q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}), \quad q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) := \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I}\right)$$

$$q(\mathbf{x}_{t} \mid \mathbf{x}_{0}) = \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}, (1 - \bar{\alpha}_{t}) \mathbf{I}\right) \qquad \alpha_{t} := 1 - \beta_{t} \qquad \bar{\alpha}_{t} := \prod_{s=1}^{t} \alpha_{s}$$

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{T} \mid \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}} + \sum_{t>1}\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right)}_{L_{t-1}} - \underbrace{\log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}_{L_{0}}\right]$$

^[30] Ho et at., 2020

Figure 2: The directed graphical model considered in this work.

LDMI **DDPM** [30]

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{T} \mid \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}} + \sum_{t>1}\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right)}_{L_{t-1}} - \log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}\right]$$

$$\mathbb{E}_{\mathbf{x}_{0}, \boldsymbol{\epsilon}}\left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1-\bar{\alpha}_{t}\right)}}\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon}, t\right)\right\|^{2}\right]$$

$$\underbrace{\left| \mathbf{x}_{0} \right| \left| p\left(\mathbf{x}_{T}\right) \right|}_{L_{T}} + \sum_{t>1} \underbrace{\frac{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \mid \left| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right) \right)}{L_{t-1}} \underbrace{-\log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}_{L_{0}} \right) }_{L_{0}}$$

$$\mathbb{E}_{\mathbf{x}_{0}, \boldsymbol{\epsilon}} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1 - \bar{\alpha}_{t}\right)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}, t\right) \right\|^{2} \right]$$

Figure 2: The directed graphical model considered in this work.

LDM **DDPM** [30]

Figure 2: The directed graphical model considered in this work.

$$\mathbb{E}_{\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1-\bar{\alpha}_{t}\right)} \left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$

$$\mathbf{L}_{\text{simple}}\left(\theta\right) := \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$

$$\mathbb{E}_{\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1-\bar{\alpha}_{t}\right)} \left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$

$$\mathbf{L}_{\text{simple}}\left(\theta\right) := \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$

LDM **DDIM** [31]

- Define a Non-Markovian Inference Model.
- The objective is the same!

$$L_{\text{simple }}(\theta) := \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t \right) \right\|^{2} \right]$$

Using the same model, you can sample in fewer steps!

Markovian (DDPM)

Non-Markovian (DDIM)

LDM

Latent Diffusion Models [28]

First stage:

$$\begin{split} \mathcal{L}_{\text{VAE}}(\phi, \psi) = & \mathbb{E}_{q_{\psi}(\boldsymbol{z} \mid \boldsymbol{X})} \left[\log p_{\Phi}(\boldsymbol{X}) \right] \\ & -\beta \cdot D_{\text{KL}} \left(q_{\psi}(\boldsymbol{z} \mid \boldsymbol{X}) \| p(\boldsymbol{z}) \right), \\ & + \mathcal{L}_{\text{perceptual}} + \mathcal{L}_{\text{GAN}} \end{split}$$

Second stage:

$$\mathcal{L}_{\text{DDPM}} = \mathbb{E}_{\boldsymbol{X},\boldsymbol{z},\epsilon,t} \left[\lambda(t) \| \epsilon - \epsilon_{\theta} (\boldsymbol{z}_{t},t) \|^{2} \right],$$

LDM Latent Diffusion Models

Latent Diffusion Models for Implicit Neural Representations

- in a (tensor-shaped) latent space.
 - \bullet

$$\mathcal{L}_{\text{VAE}}(\phi, \psi) = \mathbb{E}_{q_{\psi}(x)} - \beta$$

1. We will train an *"under-regularized"* autoencoder (VAE or VQ-VAE) to accurately represent data

The latents are mapped into INRs using our transformer-based hypernetwork decoder.

 $(\boldsymbol{z}|\boldsymbol{X},\boldsymbol{Y}) \left[\log p_{\Phi}(\boldsymbol{Y} \mid \boldsymbol{X})\right]$ $\cdot D_{\mathrm{KL}}\left(q_{\psi}(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{Y}) \| p(\boldsymbol{z})\right),$

LDMI

Latent Diffusion Models for Implicit Neural Representations

2. We will fit a Diffusion Model (DDPM) to the learned latent space.

 $\mathcal{L}_{\text{DDPM}} = \mathbb{E}_{\boldsymbol{X},\boldsymbol{Y},\boldsymbol{z},\epsilon,t} \left[\lambda(t) \| \epsilon - \epsilon_{\theta} (\boldsymbol{z}_{t},t) \|^{2} \right],$

LDMI

The Hyper-Transformer Decoder

- The latents are **tokenized** (following ViT [32]).
- Two sets of globally shared, learnable parameters:
 - Compressed weights that cross-attend the latent tokens. Ο
 - Full weights to expand the compressed weights. Ο

LDMI

ResNet encoders

- The data is stored in a structured representation.
- We can make use of powerful encoders tailored to structured data.

LDMI **Hyper-Transforming**

We can download pre-trained LDMs and just re-train only our decoder!

$\mathcal{L}_{\mathrm{HT}}(\phi) = \mathbb{E}_{q_{\psi}(\boldsymbol{z}|\boldsymbol{X}_{m},\boldsymbol{Y}_{m})} \left[\log p_{\Phi}(\boldsymbol{Y} \mid \boldsymbol{X})\right] + \mathcal{L}_{\mathrm{perceptual}} + \mathcal{L}_{\mathrm{GAN}}$

Pretrained LDMs

Datset	Task	Model	FID	IS	Prec	Recall	
CelebA-HQ	Unconditional Image Synthesis	LDM- VQ-4 (200 DDIM steps, eta=0)	5.11 (5.11)	3.29	0.72	0.49	https://omr diffusion/ce
FFHQ	Unconditional Image Synthesis	LDM- VQ-4 (200 DDIM steps, eta=1)	4.98 (4.98)	4.50 (4.50)	0.73	0.50	https://omr diffusion/ff
LSUN- Churches	Unconditional Image Synthesis	LDM- KL-8 (400 DDIM steps, eta=0)	4.02 (4.02)	2.72	0.64	0.52	https://omr diffusion/Is

Experiments Datasets

CelebA (64x64)

CelebA-HQ (256x256)

ImageNet (256x256)

ERA5 (Polar)

CelebA-HQ (64x64)

ShapeNET (Voxels)

Experiments **Baselines**

Model	Appr oach	Training Procedure	Generatio n	Reconstruction, Imputation, Super Resolution	Scalable	Flexible
GASP (2021) [5]	GAN	Minimax	Forward Pass	×	$\boldsymbol{\times}$	$\boldsymbol{\times}$
Functa (2022) [6]	Flow– based	Bilevel optimization	+ Extra Generativ e Model	Optimization procedure(s) per sample	\bigotimes	$\boldsymbol{\times}$
VaMoH (ours)	VAE- based	Single optimization	Forward Pass	Forward pass	$\boldsymbol{\times}$	$\boldsymbol{\times}$
LDMI (ours)	LDM– based	Hyper- Transforming	Forward Pass	Forward pass		

LDMI enhances efficiency, scalability quality of the learned representations.

Experiments **Generation: qualitative results**

(a) CelebA-HQ

Experiments **Generation: quantitative results**

Model

CelebA-HQ (64×64) GASP [Dupont et al., 2022a] Functa [Dupont et al., 2022b] VAMoH [Koyuncu et al., 2023] LDMI

ImageNet (256×256) Spatial Functa [Bauer et al., 2023] LDMI

Table 1: Metrics on CelebA-HQ and ImageNet.

	PSNR (dB) ↑	FID \downarrow	HN Params \downarrow
	-	7.42	25.7M
	< 30.7	40.40	-
	23.17	66.27	25.7M
	24.80	18.06	8.06M
_			
]	\leq 38.4	≤ 8.5	-
	20.69	6.94	102.78M

Experiments Reconstruction

CelebA-HQ (64x64)

CelebA-HQ (256x256)

Model	Chairs (PSNR) \uparrow	ERA5
Functa [Dupont et al., 2022b]	29.2	
VAMoH [Koyuncu et al., 2023]	38.4	
LDMI	38.8	

Table 2: Reconstruction quality (PSNR in dB) on ShapeNet Chairs and ERA5 climate data, demonstrating LDMI's strong generalization capabilities across modalities. Note that GASP is omitted as it is not applicable to INR reconstruction tasks.

Experiments **Data completion**

VAMoH

Input

Experiments Parameter efficiency

Method	HN Params	INR Weights	Ratio (INR/HN)
GASP/VAMoH	25.7M	50K	0.0019
LDMI	8.06M	330K	0.0409

Table 3: Parameter efficiency of hypernetworks (HN) in GASP/VaMoH and LDMI.

Method	HN Params	PSNR (dB)
LDMI-MLP	17.53M	24.93
LDMI-HD	8.06M	27.72

Table 4: Ablation study comparing MLP and hyper-transformer HD decoders on CelebA-HQ.

Conclusion

Thanks to learning distributions of functions, our proposed VAMoH can easily perform:

- Generation.
- Reconstruction.
- Conditional generation.
- Super resolution (interpolation).

While being:

 \checkmark Robust to partially observed data.

 \checkmark Expressive for generating high-quality data.

 \checkmark Efficient in terms of inference.

Conclusion

Thanks to using Latent Diffusion and a Transformer-based hypernetwork, LDMI enhances

- Generation quality.
- Reconstruction accuracy.
- Conditional generation.
- Super resolution.

While:

 \checkmark Being scalable.

 \checkmark Being parameter efficient.

 \checkmark Allowing for generation of **bigger INRs** and more complex data.

Further details

VARIATIONAL MIXTURE OF HYPERGENERATORS FOR LEARNING DISTRIBUTIONS OVER FUNCTIONS

Batuhan Koyuncu* Saarland University Saarbrücken, Germany Pablo Sánchez-Martín Max Planck Institute for Intelligent Systems Tübingen, Germany

Pablo M. Olmos Universidad Carlos III de Madrid Madrid, Spain Isabel Valera Saarland University Saarbrücken, Germany

Ignacio Peis Universidad Carlos III de Madrid Madrid, Spain

[Paper]

^[25] Koyuncu et at., 2023

Further details

HYPER-TRANSFORMING LATENT DIFFUSION MODELS

Ignacio Peis* Technical University of Denmark

> **Isabel Valera** Saarland University

Batuhan Koyuncu Saarland University

Jes Frellsen Technical University of Denmark

[Paper]

^[27] Peis et at., 2025

- [1] Campbell, A., Chen, W., Stimper, V., Hernandez-Lobato, J. M., & Zhang, Y. (2021, July). A gradient based strategy for hamiltonian monte carlo hyperparameter optimization. In *International Conference on Machine Learning* (pp. 1238-1248). PMLR.
- [2] Caterini, A. L., Doucet, A., & Sejdinovic, D. (2018). Hamiltonian variational auto-encoder. Advances in Neural Information Processing Systems, 31.
- [3] Salimans, T., Kingma, D., & Welling, M. (2015, June). Markov chain monte carlo and variational inference: Bridging the gap. In *International conference on machine learning* (pp. 1218-1226). PMLR.
- [4] Ruiz, F. J., Titsias, M. K., Cemgil, T., & Doucet, A. (2021, December). Unbiased gradient estimation for variational autoencoders using coupled Markov chains. In Uncertainty in Artificial Intelligence (pp. 707-717). PMLR.
- [5] Dupont, E., Whye Teh, Y. & amp; Doucet, A.. (2022). Generative Models as Distributions of Functions. Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:2989-3015.
- [6] Dupont, E., Kim, H., Eslami, S. A., Rezende, D. J., & Rosenbaum, D. (2022, June). From data to functa: Your data point is a function and you can treat it like one. In *International Conference on Machine Learning* (pp. 5694-5725). PMLR.

- [7] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.
- [8] Cremer, C., Li, X., & Duvenaud, D. (2018, July). Inference suboptimality in variational autoencoders. In International Conference on Machine Learning (pp. 1078-1086). PMLR.
- [9] Bernardo, J. M. (1979). Expected information as expected utility. *the Annals of Statistics*, 686-690.
- [10] Ma, C., Tschiatschek, S., Palla, K., Hernández-Lobato, J. M., Nowozin, S., & Zhang, C. (2018). Eddi: Efficient dynamic discovery of high-value information with partial vae. arXiv preprint arXiv:1809.11142.
- [11] Ma, C., Tschiatschek, S., Turner, R., Hernández-Lobato, J. M., & Zhang, C. (2020). VAEM: a deep generative model for heterogeneous mixed type data. Advances in Neural Information Processing Systems, 33, 11237-11247.
- [12] Child, R. (2020). Very deep vaes generalize autoregressive models and can outperform them on images. arXiv preprint arXiv:2011.10650.

- [13] Nazabal, A., Olmos, P. M., Ghahramani, Z., & Valera, I. (2020). Handling incomplete heterogeneous data using vaes. Pattern Recognition, 107, 107501.
- [14] Mattei, P. A., & Frellsen, J. (2019, May). MIWAE: Deep generative modelling and imputation of incomplete data sets. In *International conference on machine learning* (pp. 4413-4423). PMLR.
- [15] Peis, I., Ma, C., & Hernández-Lobato, J. M. (2022). Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo. arXiv preprint arXiv:2202.04599.
- [16] Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. *Physical review E, 69*(6), 066138.
- [17] Gong, W., Li, Y., & Hernández-Lobato, J. M. (2020). Sliced kernelized Stein discrepancy. arXiv preprint arXiv:2006.16531.
- [18] Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. *arXiv preprint arXiv:1701.02434*.

- methodology with applications, 79(30), 2-4.
- activation functions. Advances in Neural Information Processing Systems, 33, 7462-7473.
- [21] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019). Occupancy networks: Learning 3d 4460-4470).
- scene representations. Advances in Neural Information Processing Systems, 32.
- [23] Ha, D., Dai, A. M., & Le, Q. V. HyperNetworks. In International Conference on Learning Representations.
- *IEEE/CVF Conference on computer vision and pattern recognition* (pp. 9621-9630).

[19] Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models. *Current trends in Bayesian*

[20] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit neural representations with periodic

reconstruction in function space. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp.

[22] Sitzmann, V., Zollhöfer, M., & Wetzstein, G. (2019). Scene representation networks: Continuous 3d-structure-aware neural

[24] Wu, W., Qi, Z., & Fuxin, L. (2019). Pointconv: Deep convolutional networks on 3d point clouds. In *Proceedings of the*

[25] Koyuncu, B., Sanchez-Martin, P., Peis, I., Olmos, P. M., & Valera, I. (2023). Variational Mixture of HyperGenerators for Learning Distributions Over Functions. In Proceedings of the 40th International Conference on Machine Learning, 2023.

- classification and generation. arXiv preprint arXiv:2302.03130.
- [27]: Peis, I., Koyuncu, B., Valera, I. & Frellsen, J. (2025). Hyper-Transforming Latent Diffusion Models. arXiv preprint arXiv:2504.16580.
- models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).
- Stochastic Differential Equations. In International Conference on Learning Representations.
- systems, 33, 6840-6851.
- [31]: Song, J., Meng, C., & Ermon, S. Denoising Diffusion Implicit Models. In International Conference on Learning Representations.

[26] Bauer, M., Dupont, E., Brock, A., Rosenbaum, D., Schwarz, J. R., & Kim, H. (2023). Spatial functa: Scaling functa to imagenet

[28]: Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion

[29]: Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. Score-Based Generative Modeling through

[30]: Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing

[32]: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference on Learning Representations.

Thank you!

<u>ipeaz@dtu.dk</u>

