

### HYPER-TRANSFORMING LATENT DIFFUSION MODELS

Ignacio Peis Technical University of Denmark ipeaz@dtu.dk





PIONEER CENTRE FOR ARTIFICIAL INTELLIGENCE





## Motivation

We typically discretized data that are continuous in nature. 



Spatial





### Motivation

Real data can be expressed as a function over continuous coordinate systems. 





 $f: \mathbb{R}^2 \to \mathbb{R}^3, f(x_1, x_2) = (r, g, b) \quad f: \mathbb{R}^3 \to \{0, 1\}, f(x_1, x_2, x_3) = p \qquad f: \mathbb{R}^2 \to \mathbb{R}, f(\varphi, \lambda) = T$ 





 $f: \mathbb{R}^3 \to \mathbb{R}^3, f(x_1, x_2, t) = (r, g, b)$ 



# Motivation

Focusing on images:



- Generator function  $f: X \to Y$  creates this speficic image with the mapping  $f(x_d) = y_d, d \in [1, ..., D]$
- Each pixel is now a pair  $\{x_d, y_d\}$  where  $x_d \in \mathbb{R}^2, y_d \in \mathbb{R}^3$
- Full image is a pair of sets  $X = \{x_d\}_{d=1}^D$ ,  $Y_d = \{y_d\}_{d=1}^D$



Data generator  $f_{\boldsymbol{\theta}_i}$  is unique to each image











How to scale to large datasets?

How to map a latent representation to an INR?

<sup>[23]</sup> Ha et at., 2017





Have  $oldsymbol{z}^{(i)}$ , a summary representation of image.

<sup>[23]</sup> Ha et at., 2017





### **Previous work** $GASP^{[5]}$

Adversarial training:



### Can't tackle inference related tasks. X

<sup>[5]</sup> Dupont et at., 2020



**Point-wise Convolution** 



### **Previous work** Functa<sup>[6]</sup>

- Decoupled training:
  - 1. Fit an INR per datapoint using SIREN<sup>[20]</sup> and modulation vectors, named functas.
  - Train any generative model on the functa 2. dataset of vectors.
- Computationally expensive inference. X





### **Previous work Spatial Functa**<sup>[26]</sup>

- Decoupled training:
  - 1. Fit an INR per datapoint using SIREN<sup>[20]</sup> and **modulation tensor**.
  - Train any generative model on the functa dataset of tensors. 2.
- Computationally expensive inference. X







### How to infer the latent representation *z*?





Proposed methods (1)





### VAMoH

### Variational Mixture of HyperGenerators [25]



(a) Generative model

<sup>[25]</sup> Koyuncu et at., 2023

(b) Inference model



### VAMoH Encoder



 $oldsymbol{z}^{(i)}$ : Latent Variable



### VAMOH Encoder

• PointConv<sup>[21]</sup> encoder for point clouds.



<sup>[21]</sup> Wu et at., 2019



### VAMoH Decoder



 $oldsymbol{z}^{(i)}$ : Latent Variable



### VAMoH Reconstruction







 $\boldsymbol{Y}^{(i)} \sim p_{\boldsymbol{\theta}_{i}}(\boldsymbol{Y}^{(i)}|\boldsymbol{X}^{(i)}, \boldsymbol{z}^{(i)})$ 



### VANOH Super Resolution











### VAMoH **Image Generation**







$$Y^{(i)} \sim p_{\theta_i}(Y^{(i)}|X^{(i)}, z^{(i)})$$



### VAMoH **Image Generation**







$$\boldsymbol{Y}^{(i)} \sim p_{\boldsymbol{\theta}_{i}}(\boldsymbol{Y}^{(i)}|\boldsymbol{X}^{(i)}, \boldsymbol{z}^{(i)})$$



### VAMoH Optimization



### How to learn all these steps end-to-end from data?



### VAMoH Optimization







How: Learn an approximation  $q_{\gamma}(\boldsymbol{z}|\boldsymbol{Y}, \boldsymbol{X}) \approx p(\boldsymbol{z}|\boldsymbol{Y}, \boldsymbol{X})$ 



### VAMoH Optimization



$$\max_{\phi,\gamma} \sum_{i=1}^{N} \mathcal{L}(\phi,\gamma; \boldsymbol{Y}^{(i)}, \boldsymbol{X}^{(i)})$$



$$, \boldsymbol{Y}^{(i)}$$
,  $i \in [N]$ 



### VANOH 'Holes' problem



Regularization Term:  $\min_{\gamma} D_{KL} \left( q_{\gamma}(\boldsymbol{z} \mid \boldsymbol{Y}, \boldsymbol{X}) \| p_{\psi}(\boldsymbol{z}) \right)$  We need to align the approximate posterior with the prior.

$$p_{\psi}(\boldsymbol{z}) = q_{\gamma}(z)$$

$$\min_{\gamma,\psi} D_{KL}(q_{\gamma}(\boldsymbol{z}|\boldsymbol{Y},\boldsymbol{X}) \parallel p_{\psi}(\boldsymbol{z}))$$



### $p(\boldsymbol{z})$ $q(\boldsymbol{z}|\boldsymbol{X}_i,\boldsymbol{Y}_i)$

### Problem:

If the prior is too simple, it hinders generation quality.

Solution:

Learn a more complex  $p_{\psi}(z)$  with another NN.





### VAMoH **Flow-based prior**

More expressive prior using RealNVP (Real-valued, Non-Volume Preserving) Flow.  $\bullet$ 





$$\sim p_{\psi}(z)$$



### VAMoH **Mixture of HyperGenerators**

Single HyperGenerator



Mixture of HyperGenerators









### **VAMOH** Mixture of HyperGenerators



Image Reconstruction with Mixture of HyperGenerators



# VAMoH

• For a single data sample

$$(oldsymbol{X},oldsymbol{Y})$$

$$\mathcal{L}(\boldsymbol{Y}, \boldsymbol{X}; \psi, \phi, \boldsymbol{\gamma}) = \sum_{d=1}^{D} \mathbb{E}_{q_{\gamma_{\boldsymbol{z}}}(\boldsymbol{z} | \boldsymbol{Y}, \boldsymbol{X})} \left[ \sum_{k=1}^{K} \log p_{\boldsymbol{\theta}_{k}} \left( \boldsymbol{y}_{d} \mid \boldsymbol{x}_{d} \right) \cdot \pi_{dk} \right] \\ - D_{KL} \left( q_{\gamma_{c}}(\boldsymbol{C} \mid \boldsymbol{z}, \boldsymbol{X}, \boldsymbol{Y}) \| p_{\psi_{c}}(\boldsymbol{C} \mid \boldsymbol{z}, \boldsymbol{X}) \right)$$

T





# $p_{\boldsymbol{\theta}_{k}}\left(\boldsymbol{y}_{d} \mid \boldsymbol{x}_{d}\right) \cdot \pi_{dk} - D_{KL}\left(q_{\gamma_{z}}(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{Y}) \| p_{\psi_{z}}(\boldsymbol{z})\right)$



- KL of the continuous latent variable
- KL of the discrete latent variable



### Experiments **Baselines**

| Model           | Approach | Training Procedure | Generation   | Reconstruction, Imputation,<br>Super Resolution |
|-----------------|----------|--------------------|--------------|-------------------------------------------------|
| GASP (2021) [5] | GAN      | Minimax            | Forward Pass | $\boldsymbol{\times}$                           |
|                 |          |                    |              |                                                 |
|                 |          |                    |              |                                                 |





### Experiments **Baselines**

| Model             | Approach   | Training Procedure   | Generation                  | Reconstruction, Imputation,<br>Super Resolution |
|-------------------|------------|----------------------|-----------------------------|-------------------------------------------------|
| GASP (2021) [5]   | GAN        | Minimax              | Forward Pass                | $\boldsymbol{\times}$                           |
| Functa (2022) [6] | Flow-based | Bilevel optimization | + Extra Generative<br>Model | Optimization procedure(s)<br>per sample         |
|                   |            |                      |                             |                                                 |





### Experiments **Baselines**

| Model             | Approach   | Training Procedure   | Generation                  | Reconstruction, Imputation,                                                                                  |
|-------------------|------------|----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------|
| GASP (2021) [5]   | GAN        | Minimax              | Forward Pass                | $\min_{\phi} -\log p(\phi) + \lambda \sum_{i \in \mathcal{I}} \ f_{\phi}(\mathbf{x}_i) - \mathbf{f}_i\ _2^2$ |
| Functa (2022) [6] | Flow-based | Bilevel optimization | + Extra Generative<br>Model | Optimization procedure(s)<br>per sample                                                                      |
|                   |            |                      |                             |                                                                                                              |






## Experiments **Baselines**

| Model             | Approach   | Training Procedure Generation |                             | Reconstruction, Imputation,<br>Super Resolution |
|-------------------|------------|-------------------------------|-----------------------------|-------------------------------------------------|
| GASP (2021) [5]   | GAN        | Minimax                       | Forward Pass                | $\boldsymbol{\times}$                           |
| Functa (2022) [6] | Flow-based | Bilevel optimization          | + Extra Generative<br>Model | Optimization procedure(s) per sample            |
| VaMoH (ours)      | VAE-based  | Single optimization           | Forward Pass                | Forward pass                                    |

VAMoH provides a probabilistic generative model that is efficient, robust, and expressive for modeling distribution over functions.







### **Experiments** Datasets

PolyMNIST (28x28)



Shapes3D (64x64)



CelebA-HQ (64x64)



ERA5 (Polar)



ShapeNET (Voxels)









### Experiments Generation



CelebA-HQ



Shapes3D



## Experiments Generation





PolyMNIST



ERA5

GASP VAMoH



ShapeNET





### **Experiments** Reconstructions



(c) POLYMNIST

SHAPES3D





## **Experiments** Inference times

Table 2: Comparison of inference time (seconds) for reconstruction task of VaMoH and Functa. On the right-most two columns, we show the speed improvement of VaMoH compared to Functa (3) which is trained with 3 gradient steps as suggested in the original paper [Dupont et al., 2022b] and Functa (10) which is trained with 10 gradient step to obtain the results of Functa depicted in Figures 16,17. Please note that these experiments are run on the same GPU device.

|           | Model Inference Time (secs) |            |             | Speed Improvement |                 |  |
|-----------|-----------------------------|------------|-------------|-------------------|-----------------|--|
| Dataset   | VaMoH                       | Functa (3) | Functa (10) | vs. Functa (3)    | vs. Functa (10) |  |
| POLYMNIST | 0.00453                     | 0.01648    | 0.05108     | x 3.64            | x 11.28         |  |
| Shapes3D  | 0.00536                     | 0.01759    | 0.05480     | x 3.28            | x 10.22         |  |
| CELEBA HQ | 0.00757                     | 0.01733    | 0.05381     | x 2.29            | x 7.11          |  |
| ERA5      | 0.00745                     | 0.01899    | 0.05932     | x 2.55            | x 7.96          |  |
| ShapeNet  | 0.00689                     | 0.02095    | 0.06576     | x 3.04            | x 9.54          |  |

|           | Model   | Inference T | ime (secs)  | Speed Im       | provement       |
|-----------|---------|-------------|-------------|----------------|-----------------|
| Dataset   | VaMoH   | Functa (3)  | Functa (10) | vs. Functa (3) | vs. Functa (10) |
| POLYMNIST | 0.00455 | 0.01649     | 0.05109     | x 3.62         | x 11.23         |
| Shapes3D  | 0.00544 | 0.01768     | 0.05489     | x 3.25         | x 10.09         |
| CELEBA HQ | 0.00833 | 0.01729     | 0.05377     | <b>x 2.08</b>  | <b>x 6.46</b>   |
| ERA5      | 0.00790 | 0.01997     | 0.06030     | x 2.53         | x 7.63          |
| ShapeNet  | 0.01440 | 0.02089     | 0.06569     | x 1.45         | x 4.56          |

Reconstruction

### Super-reconstruction



## Experiments Image completion



Missing a patch (in-painting)

Missing half of the image



0

Image out-painting





Proposed method (2)





## **Limitations of previous work** Flexibility of the latent space in [5, 6, 25]

• This makes generation quality poor.



(a) CELEBA HQ

<sup>[5]</sup> Dupont et at., 2020 <sup>[6]</sup> Dupont et at., 2022 <sup>[25]</sup> Koy

(b) SHAPES3D



# Limitations of previous work Hypernetwork bottleneck in [5, 25]



<sup>[5]</sup> Dupont et at., 2020

<sup>[25]</sup> Koyuncu et at., 2023





## **Proposed methods (2)** Hyper-Transforming Latent Variable Models [27] (LDMI)

**Latent Diffusion** [28]



<sup>[27]</sup> Peis et at., 2025







## Proposed methods (2) The HD decoder

 $\rightarrow$ **→** Transformer Encoder  $\rightarrow$  $\rightarrow$  $\rightarrow$  $\boldsymbol{z}$ 

<sup>[27]</sup> Peis et at., 2025





### LDM **Diffusion Models [29]**

### **Denoising Score Matching**



<sup>[29]</sup> Song et at., 2020



$$_{0}\left[\left\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t),t) - \nabla_{\mathbf{x}(t)}\log p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0))\right\|_{2}^{2}\right]\right\}$$



### LDMI **Diffusion Models [29]**



<sup>[29]</sup> Song et at., 2020

### $s_{ heta}(oldsymbol{x}_t,t)$





## LDM **DDPM** [30]



$$p_{\theta}(\mathbf{x}_{0:T}) := p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}), \quad p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$

$$q(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}) := \prod_{t=1}^{T} q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}), \quad q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) := \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I}\right)$$

$$q(\mathbf{x}_{t} \mid \mathbf{x}_{0}) = \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}, (1 - \bar{\alpha}_{t}) \mathbf{I}\right) \qquad \alpha_{t} := 1 - \beta_{t} \qquad \bar{\alpha}_{t} := \prod_{s=1}^{t} \alpha_{s}$$

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{T} \mid \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}} + \sum_{t>1}\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right)}_{L_{t-1}} - \underbrace{\log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}_{L_{0}}\right]$$

<sup>[30]</sup> Ho et at., 2020



Figure 2: The directed graphical model considered in this work.



## LDMI **DDPM** [30]



$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{T} \mid \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}} + \sum_{t>1}\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right)}_{L_{t-1}} - \log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}\right]$$

$$\mathbb{E}_{\mathbf{x}_{0}, \boldsymbol{\epsilon}}\left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1-\bar{\alpha}_{t}\right)}}\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon}, t\right)\right\|^{2}\right]$$

$$\underbrace{\left| \mathbf{x}_{0} \right| \left| p\left(\mathbf{x}_{T}\right) \right|}_{L_{T}} + \sum_{t>1} \underbrace{\frac{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \mid \left| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right) \right)}{L_{t-1}} \underbrace{-\log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}_{L_{0}} \right) }_{L_{0}}$$

$$\mathbb{E}_{\mathbf{x}_{0}, \boldsymbol{\epsilon}} \left[ \frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1 - \bar{\alpha}_{t}\right)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}, t\right) \right\|^{2} \right]$$

Figure 2: The directed graphical model considered in this work.



## LDM **DDPM** [30]



Figure 2: The directed graphical model considered in this work.

$$\mathbb{E}_{\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[ \frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1-\bar{\alpha}_{t}\right)} \left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$

$$\mathbf{L}_{\text{simple}}\left(\theta\right) := \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[ \left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$

$$\mathbb{E}_{\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[ \frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1-\bar{\alpha}_{t}\right)} \left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$

$$\mathbf{L}_{\text{simple}}\left(\theta\right) := \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[ \left\| \boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right) \right\|^{2} \right]$$





### LDM **DDIM** [31]

- Define a Non-Markovian Inference Model.
- The objective is the same!

$$L_{\text{simple }}(\theta) := \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[ \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left( \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t \right) \right\|^{2} \right]$$

Using the same model, you can sample in fewer steps! 



### Markovian (DDPM)

### Non-Markovian (DDIM)





# LDM

### Latent Diffusion Models [28]

First stage: 

$$\begin{split} \mathcal{L}_{\text{VAE}}(\phi, \psi) = & \mathbb{E}_{q_{\psi}(\boldsymbol{z} \mid \boldsymbol{X})} \left[ \log p_{\Phi}(\boldsymbol{X}) \right] \\ & -\beta \cdot D_{\text{KL}} \left( q_{\psi}(\boldsymbol{z} \mid \boldsymbol{X}) \| p(\boldsymbol{z}) \right), \\ & + \mathcal{L}_{\text{perceptual}} + \mathcal{L}_{\text{GAN}} \end{split}$$

Second stage:

$$\mathcal{L}_{\text{DDPM}} = \mathbb{E}_{\boldsymbol{X},\boldsymbol{z},\epsilon,t} \left[ \lambda(t) \| \epsilon - \epsilon_{\theta} (\boldsymbol{z}_{t},t) \|^{2} \right],$$









### LDM Latent Diffusion Models









# 

### Latent Diffusion Models for Implicit Neural Representations

- in a (tensor-shaped) latent space.
  - $\bullet$

$$\mathcal{L}_{\text{VAE}}(\phi, \psi) = \mathbb{E}_{q_{\psi}(x)} - \beta$$





1. We will train an *"under-regularized"* autoencoder (VAE or VQ-VAE) to accurately represent data

The latents are mapped into INRs using our transformer-based hypernetwork decoder.

 $(\boldsymbol{z}|\boldsymbol{X},\boldsymbol{Y}) \left[\log p_{\Phi}(\boldsymbol{Y} \mid \boldsymbol{X})\right]$  $\cdot D_{\mathrm{KL}}\left(q_{\psi}(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{Y}) \| p(\boldsymbol{z})\right),$ 





## LDMI

### Latent Diffusion Models for Implicit Neural Representations

2. We will fit a Diffusion Model (DDPM) to the learned latent space.

 $\mathcal{L}_{\text{DDPM}} = \mathbb{E}_{\boldsymbol{X},\boldsymbol{Y},\boldsymbol{z},\epsilon,t} \left[ \lambda(t) \| \epsilon - \epsilon_{\theta} (\boldsymbol{z}_{t},t) \|^{2} \right],$ 









# LDMI

### **The Hyper-Transformer Decoder**

- The latents are **tokenized** (following ViT [32]).
- Two sets of globally shared, learnable parameters:
  - Compressed weights that cross-attend the latent tokens. Ο
  - Full weights to expand the compressed weights. Ο







# LDMI

### **ResNet encoders**

- The data is stored in a structured representation.
- We can make use of powerful encoders tailored to structured data.







## LDMI **Hyper-Transforming**

We can download pre-trained LDMs and just re-train only our decoder!





### $\mathcal{L}_{\mathrm{HT}}(\phi) = \mathbb{E}_{q_{\psi}(\boldsymbol{z}|\boldsymbol{X}_{m},\boldsymbol{Y}_{m})} \left[\log p_{\Phi}(\boldsymbol{Y} \mid \boldsymbol{X})\right] + \mathcal{L}_{\mathrm{perceptual}} + \mathcal{L}_{\mathrm{GAN}}$

### Pretrained LDMs

| Datset            | Task                                | Model                                            | FID         | IS          | Prec | Recall |                             |
|-------------------|-------------------------------------|--------------------------------------------------|-------------|-------------|------|--------|-----------------------------|
| CelebA-HQ         | Unconditional<br>Image<br>Synthesis | LDM-<br>VQ-4<br>(200<br>DDIM<br>steps,<br>eta=0) | 5.11 (5.11) | 3.29        | 0.72 | 0.49   | https://omr<br>diffusion/ce |
| FFHQ              | Unconditional<br>Image<br>Synthesis | LDM-<br>VQ-4<br>(200<br>DDIM<br>steps,<br>eta=1) | 4.98 (4.98) | 4.50 (4.50) | 0.73 | 0.50   | https://omr<br>diffusion/ff |
| LSUN-<br>Churches | Unconditional<br>Image<br>Synthesis | LDM-<br>KL-8<br>(400<br>DDIM<br>steps,<br>eta=0) | 4.02 (4.02) | 2.72        | 0.64 | 0.52   | https://omr<br>diffusion/Is |
|                   |                                     |                                                  |             |             |      |        |                             |



### **Experiments** Datasets

*CelebA (64x64)* 



CelebA-HQ (256x256)







ImageNet (256x256)



ERA5 (Polar)







### CelebA-HQ (64x64)





### ShapeNET (Voxels)









## Experiments **Baselines**

| Model                | Appr<br>oach   | Training<br>Procedure   | Generatio<br>n                  | Reconstruction,<br>Imputation,<br>Super Resolution | Scalable              | Flexible              |
|----------------------|----------------|-------------------------|---------------------------------|----------------------------------------------------|-----------------------|-----------------------|
| GASP<br>(2021) [5]   | GAN            | Minimax                 | Forward<br>Pass                 | ×                                                  | $\boldsymbol{\times}$ | $\boldsymbol{\times}$ |
| Functa<br>(2022) [6] | Flow–<br>based | Bilevel<br>optimization | + Extra<br>Generativ<br>e Model | Optimization<br>procedure(s)<br>per sample         | $\bigotimes$          | $\boldsymbol{\times}$ |
| VaMoH<br>(ours)      | VAE-<br>based  | Single<br>optimization  | Forward<br>Pass                 | Forward pass                                       | $\boldsymbol{\times}$ | $\boldsymbol{\times}$ |
| LDMI<br>(ours)       | LDM–<br>based  | Hyper-<br>Transforming  | Forward<br>Pass                 | Forward pass                                       |                       |                       |

LDMI enhances efficiency, scalability quality of the learned representations.



### Experiments **Generation: qualitative results**







(a) CelebA-HQ



### Experiments **Generation: quantitative results**

Model

**CelebA-HQ**  $(64 \times 64)$ GASP [Dupont et al., 2022a] Functa [Dupont et al., 2022b] VAMoH [Koyuncu et al., 2023] LDMI

**ImageNet**  $(256 \times 256)$ Spatial Functa [Bauer et al., 2023] LDMI

Table 1: Metrics on CelebA-HQ and ImageNet.



|   | PSNR (dB) ↑ | <b>FID</b> $\downarrow$ | HN Params $\downarrow$ |
|---|-------------|-------------------------|------------------------|
|   | -           | 7.42                    | 25.7M                  |
|   | < 30.7      | 40.40                   | -                      |
|   | 23.17       | 66.27                   | 25.7M                  |
|   | 24.80       | 18.06                   | 8.06M                  |
| _ |             |                         |                        |
| ] | $\leq$ 38.4 | $\leq 8.5$              | -                      |
|   | 20.69       | 6.94                    | 102.78M                |

### Experiments Reconstruction

CelebA-HQ (64x64)



### CelebA-HQ (256x256)





| Model                         | Chairs (PSNR) $\uparrow$ | ERA5 |
|-------------------------------|--------------------------|------|
| Functa [Dupont et al., 2022b] | 29.2                     |      |
| VAMoH [Koyuncu et al., 2023]  | 38.4                     |      |
| LDMI                          | 38.8                     |      |

Table 2: Reconstruction quality (PSNR in dB) on ShapeNet Chairs and ERA5 climate data, demonstrating LDMI's strong generalization capabilities across modalities. Note that GASP is omitted as it is not applicable to INR reconstruction tasks.





### Experiments **Data completion**

### VAMoH





### Input



















### **Experiments** Parameter efficiency

| Method     | <b>HN Params</b> | INR Weights | Ratio (INR/HN) |
|------------|------------------|-------------|----------------|
| GASP/VAMoH | 25.7M            | 50K         | 0.0019         |
| LDMI       | <b>8.06M</b>     | <b>330K</b> | <b>0.0409</b>  |

Table 3: Parameter efficiency of hypernetworks (HN) in GASP/VaMoH and LDMI.

| Method   | <b>HN Params</b> | PSNR (dB) |
|----------|------------------|-----------|
| LDMI-MLP | 17.53M           | 24.93     |
| LDMI-HD  | 8.06M            | 27.72     |

Table 4: Ablation study comparing MLP and hyper-transformer HD decoders on CelebA-HQ.





# Conclusion

Thanks to learning distributions of functions, our proposed VAMoH can easily perform:

- Generation.
- Reconstruction.
- Conditional generation.
- Super resolution (interpolation).

While being:

 $\checkmark$  Robust to partially observed data.

 $\checkmark$  Expressive for generating high-quality data.

 $\checkmark$  Efficient in terms of inference.





# Conclusion

Thanks to using Latent Diffusion and a Transformer-based hypernetwork, LDMI enhances

- Generation quality.
- Reconstruction accuracy.
- Conditional generation.
- Super resolution.

While:

 $\checkmark$  Being scalable.

 $\checkmark$  Being parameter efficient.

 $\checkmark$  Allowing for generation of **bigger INRs** and more complex data.





### Further details

### VARIATIONAL MIXTURE OF HYPERGENERATORS FOR LEARNING DISTRIBUTIONS OVER FUNCTIONS

Batuhan Koyuncu\* Saarland University Saarbrücken, Germany Pablo Sánchez-Martín Max Planck Institute for Intelligent Systems Tübingen, Germany

Pablo M. Olmos Universidad Carlos III de Madrid Madrid, Spain Isabel Valera Saarland University Saarbrücken, Germany



Ignacio Peis Universidad Carlos III de Madrid Madrid, Spain



[Paper]

<sup>[25]</sup> Koyuncu et at., 2023



### **Further details**

### HYPER-TRANSFORMING LATENT DIFFUSION MODELS

Ignacio Peis\* Technical University of Denmark

> **Isabel Valera** Saarland University

Batuhan Koyuncu Saarland University

Jes Frellsen Technical University of Denmark





[Paper]

<sup>[27]</sup> Peis et at., 2025


- [1] Campbell, A., Chen, W., Stimper, V., Hernandez-Lobato, J. M., & Zhang, Y. (2021, July). A gradient based strategy for hamiltonian monte carlo hyperparameter optimization. In *International Conference on Machine Learning* (pp. 1238-1248). PMLR.
- [2] Caterini, A. L., Doucet, A., & Sejdinovic, D. (2018). Hamiltonian variational auto-encoder. Advances in Neural Information Processing Systems, 31.
- [3] Salimans, T., Kingma, D., & Welling, M. (2015, June). Markov chain monte carlo and variational inference: Bridging the gap. In *International conference on machine learning* (pp. 1218-1226). PMLR.
- [4] Ruiz, F. J., Titsias, M. K., Cemgil, T., & Doucet, A. (2021, December). Unbiased gradient estimation for variational autoencoders using coupled Markov chains. In Uncertainty in Artificial Intelligence (pp. 707-717). PMLR.
- [5] Dupont, E., Whye Teh, Y. & amp; Doucet, A.. (2022). Generative Models as Distributions of Functions. Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:2989-3015.
- [6] Dupont, E., Kim, H., Eslami, S. A., Rezende, D. J., & Rosenbaum, D. (2022, June). From data to functa: Your data point is a function and you can treat it like one. In *International Conference on Machine Learning* (pp. 5694-5725). PMLR.



- [7] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.
- [8] Cremer, C., Li, X., & Duvenaud, D. (2018, July). Inference suboptimality in variational autoencoders. In International Conference on Machine Learning (pp. 1078-1086). PMLR.
- [9] Bernardo, J. M. (1979). Expected information as expected utility. *the Annals of Statistics*, 686-690.
- [10] Ma, C., Tschiatschek, S., Palla, K., Hernández-Lobato, J. M., Nowozin, S., & Zhang, C. (2018). Eddi: Efficient dynamic discovery of high-value information with partial vae. arXiv preprint arXiv:1809.11142.
- [11] Ma, C., Tschiatschek, S., Turner, R., Hernández-Lobato, J. M., & Zhang, C. (2020). VAEM: a deep generative model for heterogeneous mixed type data. Advances in Neural Information Processing Systems, 33, 11237-11247.
- [12] Child, R. (2020). Very deep vaes generalize autoregressive models and can outperform them on images. arXiv preprint arXiv:2011.10650.



- [13] Nazabal, A., Olmos, P. M., Ghahramani, Z., & Valera, I. (2020). Handling incomplete heterogeneous data using vaes. Pattern Recognition, 107, 107501.
- [14] Mattei, P. A., & Frellsen, J. (2019, May). MIWAE: Deep generative modelling and imputation of incomplete data sets. In *International conference on machine learning* (pp. 4413-4423). PMLR.
- [15] Peis, I., Ma, C., & Hernández-Lobato, J. M. (2022). Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo. arXiv preprint arXiv:2202.04599.
- [16] Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. *Physical review E, 69*(6), 066138.
- [17] Gong, W., Li, Y., & Hernández-Lobato, J. M. (2020). Sliced kernelized Stein discrepancy. arXiv preprint arXiv:2006.16531.
- [18] Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. *arXiv preprint arXiv:1701.02434*.



- methodology with applications, 79(30), 2-4.
- activation functions. Advances in Neural Information Processing Systems, 33, 7462-7473.
- [21] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019). Occupancy networks: Learning 3d 4460-4470).
- scene representations. Advances in Neural Information Processing Systems, 32.
- [23] Ha, D., Dai, A. M., & Le, Q. V. HyperNetworks. In International Conference on Learning Representations.
- *IEEE/CVF Conference on computer vision and pattern recognition* (pp. 9621-9630).



[19] Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models. *Current trends in Bayesian* 

[20] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit neural representations with periodic

reconstruction in function space. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp.

[22] Sitzmann, V., Zollhöfer, M., & Wetzstein, G. (2019). Scene representation networks: Continuous 3d-structure-aware neural

[24] Wu, W., Qi, Z., & Fuxin, L. (2019). Pointconv: Deep convolutional networks on 3d point clouds. In *Proceedings of the* 

[25] Koyuncu, B., Sanchez-Martin, P., Peis, I., Olmos, P. M., & Valera, I. (2023). Variational Mixture of HyperGenerators for Learning Distributions Over Functions. In Proceedings of the 40th International Conference on Machine Learning, 2023.

- classification and generation. arXiv preprint arXiv:2302.03130.
- [27]: Peis, I., Koyuncu, B., Valera, I. & Frellsen, J. (2025). Hyper-Transforming Latent Diffusion Models. arXiv preprint arXiv:2504.16580.
- models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).
- Stochastic Differential Equations. In International Conference on Learning Representations.
- systems, 33, 6840-6851.
- [31]: Song, J., Meng, C., & Ermon, S. Denoising Diffusion Implicit Models. In International Conference on Learning Representations.



[26] Bauer, M., Dupont, E., Brock, A., Rosenbaum, D., Schwarz, J. R., & Kim, H. (2023). Spatial functa: Scaling functa to imagenet

[28]: Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion

[29]: Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. Score-Based Generative Modeling through

[30]: Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing



[32]: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference on Learning Representations.

# Thank you!



<u>ipeaz@dtu.dk</u>













